Heterogeneous diffuse interfaces: A new mechanism for arrested coarsening in binary mixtures

Heterogeneous diffuse interfaces
  • R. Benzi
  • M. Bernaschi
  • M. Sbragaglia
  • S. SucciEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses


We discuss the dynamics of binary fluid mixtures in which surface tension density is allowed to become locally negative within the interface, while still preserving positivity of the overall surface tension (heterogeneous diffuse interface). Numerical simulations of two-dimensional Ginzburg-Landau phase field equations implementing such mechanism and including hydrodynamic motion, show evidence of dynamically arrested domain coarsening. Under specific conditions on the functional form of the surface tension density, dynamical arrest can be interpreted in terms of the collective dynamics of metastable, non-linear excitations of the density field, named compactons, as they are localized to finite-size regions of configuration space and strictly zero elsewhere. Aside from compactons, the heterogeneous diffuse interface scenario appears to provide a robust mechanism for the interpretation of many aspects of soft-glassy behaviour in binary fluid mixtures.


Binary Mixture Hydrodynamic Interaction Lattice Boltzmann False Vacuum True Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. Benzi, S. Chibbaro, S. Succi, Phys. Rev. Lett. 102, 026002 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    R. Benzi et al., Europhys. Lett. 91, 14003 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    R. Benzi, M. Sbragaglia, M. Bernaschi, S. Succi, Phys. Rev. Lett. 106, 164501 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    A. Bray, Adv. Phys. 43, 357 (1994).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    D. Seul, D. Andelman, Science 267, 476 (1995).ADSCrossRefGoogle Scholar
  6. 6.
    A. Lamura, G. Gonnella, J.M. Yeomans, Europhys. Lett. 45, 314 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    S. Wu et al., Phys. Rev. B 70, 024207 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    S.A. Brazovskii et al., Sov. Phys. JETP 66, 625 (1987).Google Scholar
  9. 9.
    P.L. Geissler, D.R. Reichman, Phys. Rev. E 71, 031206 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    M. Tarzia, A. Coniglio, Phys. Rev. Lett. 96, 075702 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    G. Gompper, M. Schick, Phys. Rev. Lett. 65, 1116 (1990).ADSCrossRefGoogle Scholar
  12. 12.
    G. Gompper, S. Zshocke, Phys. Rev. A 46, 4836 (1992).ADSCrossRefGoogle Scholar
  13. 13.
    F.H. Stillinger, J. Weber, Science 225, 983 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    F. Sciortino et al., Phys. Rev. Lett. 83, 3214 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    T.S. Grigera et al., Phys. Rev. Lett. 88, 055502 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    V. Kendon, M. Cates, I. Pagonabarraga, J.-C. Desplat, P. Blandon, J. Fluid Mech. 440, 147 (2001).ADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. Benzi
    • 1
  • M. Bernaschi
    • 2
  • M. Sbragaglia
    • 1
  • S. Succi
    • 2
    Email author
  1. 1.Physics DepartmentUniversity of RomaRomaItaly
  2. 2.Istituto Applicazioni Calcolo-CNRRomaItaly

Personalised recommendations