Relaxation time and viscosity of fused silica glass at room temperature

  • M. VannoniEmail author
  • A. Sordini
  • G. Molesini
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses


Cases of long-term deformation of fused silica glass at room temperature attributed to the action of gravity have been reported. Further experimental investigations now provide evidence of time-dependent viscous behavior, with a time constant of the order of 10 years. Data relating to a pair of fused silica reference plates are presented, showing the overall deformation occurred over the years; considerations on the pertaining viscosity with aging are also given. An account of the observed relaxation process in terms of the Kelvin-Voigt model for linear viscoelasticity is provided.


Fuse Silica Linear Viscoelasticity Knoop Hardness Fuse Silica Glass Absolute Planarity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    G.B. Dew, Opt. Acta 21, 609 (1974).ADSCrossRefGoogle Scholar
  2. 2.
    M. Vannoni, M. Olivieri, G. Mondello, A. Sordini, G. Molesini, Metrologia 47, 175 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    M. Ando et al., Phys. Rev. Lett. 86, 3950 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    M. Vannoni, A. Sordini, G. Molesini, Opt. Express 18, 5114 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    M. Vannoni, G. Molesini, Metrologia 42, 389 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    J. Yellowhair, J.H. Burge, Appl. Opt. 46, 8466 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    B.S. Fritz, Opt. Eng. 33, 379 (1984).Google Scholar
  8. 8.
    V. Greco, R. Tronconi, C. Del Vecchio, M. Trivi, G. Molesini, Appl. Opt. 38, 2018 (1999).ADSCrossRefGoogle Scholar
  9. 9.
    M. Vannoni, G. Molesini, Opt. Express 15, 6809 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    M. Vannoni, G. Molesini, Opt. Express 16, 340 (2008).ADSCrossRefGoogle Scholar
  11. 11.
    Guide to the Expression of Uncertainty in Measurement (ISO - International Organization for Standardization, Geneva, 1993).Google Scholar
  12. 12.
    B. Mysen, P. Richet, Silicate Glasses and Melts (Elsevier, Amsterdam, 2005) p. 134Google Scholar
  13. 13.
    J.W. Berthold III, S.F. Jacobs, M.A. Norton, Appl. Opt. 15, 1898 (1976).ADSCrossRefGoogle Scholar
  14. 14.
    J.W. Berthold III, S.F. Jacobs, M.A. Norton, Metrologia 3, 9 (1977).ADSCrossRefGoogle Scholar
  15. 15.
    B.A. Proctor, I. Whitney, J.W. Johnson, Proc. R. Soc. London, Ser. A 297, 534 (1967).ADSCrossRefGoogle Scholar
  16. 16.
    L. Landau, E. Lifchitz, Théorie de l’Élasticité (MIR, Moscou, 1967) pp. 201-203Google Scholar
  17. 17.
    H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989) pp. 39-43Google Scholar
  18. 18.
    A.S. Argon, J. Appl. Phys. 39, 4080 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    E.D. Zanotto, P.K. Gupta, Am. J. Phys. 67, 260 (1999).ADSCrossRefGoogle Scholar
  20. 20.
    Y.M. Stokes, Proc. R. Soc. London, Ser. A 456, 1861 (2000).MathSciNetADSzbMATHCrossRefGoogle Scholar
  21. 21.
    C.A. Angell, J. Phys. Chem. Solids 49, 863 (1988).ADSCrossRefGoogle Scholar
  22. 22.
    J.C. Mauro, R.J. Loucks, Phys. Rev. B 76, 174202 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    J.C. Mauro, D.C. Allan, M. Potuzak, Phys. Rev. B 80, 094204 (2009).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.CNR-Istituto Nazionale di OtticaFirenzeItaly

Personalised recommendations