Advertisement

Temperature behavior of the Kohlrausch exponent for a series of vinylic polymers modelled by an all-atomistic approach

  • S. Palato
  • N. Metatla
  • A. Soldera
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract

The Kohlrausch-Williams-Watt (KWW) function, or stretched exponential function, is usually employed to reveal the time dependence of the polymer backbone relaxation process, the so-called α relaxation, at different temperatures. In order to gain insight into polymer dynamics at temperatures higher than the glass transition temperature T g , the behavior of the Kohlrausch exponent, which is a component of the KWW function, is studied for a series of vinylic polymers, using an all-atomistic simulation approach. Our data show very good agreement with published experimental results and can be described by existing phenomenological models. The Kohlrausch exponent exhibits a linear dependence with temperature until it reaches a constant value of 0.44, at 1.26T g , revealing the existence of two regimes. These results suggest that, as the temperature increases, the dynamics progressively change until it reaches a plateau. The non-exponential character then describes subdiffusive motion characteristic of polymer melts.

Keywords

PMMA Trapping Model Methyl Styrene Vinylic Polymer Dispersion Zone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Donth, The Glass Transition (Springer-Verlag, New York, 2001).Google Scholar
  2. 2.
    A. Alegría, J. Colmenero, P.O. Mari, I.A. Campbell, Phys. Rev. E 59, 6888 (1999).ADSCrossRefGoogle Scholar
  3. 3.
    R. Kohlrausch, Ann. Phys. Chem. 91, 179 (1874).Google Scholar
  4. 4.
    G. Williams, D.C. Watts, Trans. Faraday Soc. 66, 80 (1970).CrossRefGoogle Scholar
  5. 5.
    A. Soldera, N. Metatla, Phys. Rev. E 74, 061803 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    M.N. Berberan-Santos, E. Bodunov, B. Valeur, Chem. Phys. 315, 171 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    A. Jurlewicz, K. Weron, J. Non-Cryst. Solids 305, 112 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    X. Xia, P. Wolynes, Phys. Rev. Lett. 86, 5526 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    D. Apitz, P.M. Johansen, J. Appl. Phys. 97, 063507 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    J.C. Phillips, J. Non-Cryst. Solids 172, 98 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    J.C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).ADSCrossRefGoogle Scholar
  12. 12.
    K.L. Ngai, J. Phys.: Condens. Matter 12, 6437 (2000).ADSCrossRefGoogle Scholar
  13. 13.
    K.L. Ngai, S. Capaccioli, J. Phys.: Condens. Matter 19, 200301 (2007).CrossRefGoogle Scholar
  14. 14.
    P.K. Dixon, S.R. Nagel, Phys. Rev. Lett. 61, 341 (1988).ADSCrossRefGoogle Scholar
  15. 15.
    J. Rault, Physical Aging of Glasses: the VFT Approach, Materials science and technologies series (Nova Science Publishers, New York, 2009).Google Scholar
  16. 16.
    J. Rault, J. Non-Cryst. Solids 271, 177 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    J. Rault, J. Non-Cryst. Solids 357, 339 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    K. Trachenko, M.T. Dove, Phys. Rev. B 70, 132202 (2004).ADSCrossRefGoogle Scholar
  19. 19.
    S.F. Chekmarev, Phys. Rev, E 78, 066113 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    D. Boese, F. Kremer, Macromolecules 23, 829 (1990).ADSCrossRefGoogle Scholar
  21. 21.
    J. Colmenero, A. Arbe, A. Alegria, M. Monkenbusch, D. Richter, J. Phys.: Condens. Matter 11, A363 (1999).ADSCrossRefGoogle Scholar
  22. 22.
    W. Götze, in Liquides, Cristallisation et Transition Vitreuse/Liquids, Freezing and Glass Transition, edited by J. Hansen, D. Levesques, J. Zinn-Justin (Elsevier Science Publishers, 1991).Google Scholar
  23. 23.
    G. Dicker, M.P. de Haas, D.M. de Leeuw, L.D.A. Siebbeles, Chem. Phys. Lett. 402, 370 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    A. Soldera, Y. Grohens, Polymer 45, 1307 (2004).CrossRefGoogle Scholar
  25. 25.
    A. Soldera, N. Metatla, Composites Part A: Appl. Sci. Manufact. 36, 521 (2005).CrossRefGoogle Scholar
  26. 26.
    S. Sastry, P. Debenedetti, F. Stillinger, Nature 393, 554 (1998).ADSCrossRefGoogle Scholar
  27. 27.
    Y. Jin, R.H. Boyd, J. Chem. Phys. 108, 9912 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    W. Paul, G.D. Smith, Rep. Prog. Phys. 67, 1117 (2004).ADSCrossRefGoogle Scholar
  29. 29.
    N. Metatla, A. Soldera, Macromolecules 40, 9680 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    S. Antoniadis, C. Samara, D. Theodorou, Macromolecules 31, 7944 (1998).ADSCrossRefGoogle Scholar
  31. 31.
    A. Soldera, Y. Grohens, Macromolecules 35, 722 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    A. Soldera, Macromol. Symp. 133, 21 (1998).CrossRefGoogle Scholar
  33. 33.
    N. Metatla, A. Soldera, Mol. Simul. 32, 1187 (2006).CrossRefGoogle Scholar
  34. 34.
    N. Metatla, A. Soldera, Macromol. Theory Simul. 20, 266 (2011).CrossRefGoogle Scholar
  35. 35.
    R. Roe, J. Non-Cryst. Solids 235-237, 308 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    W. Smith, T.R. Forrester, J. Molec. Graph. 14, 136 (1996).CrossRefGoogle Scholar
  37. 37.
    J. Haile, Molecular Dynamics Simulation (John Wiley & Sons, New York, 1992).Google Scholar
  38. 38.
    H.J.C. Berendsen, J.P.M. Postma, W.F. Van Gunsteren, A. Dinola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984).ADSCrossRefGoogle Scholar
  39. 39.
    M. Allen, D. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1987).Google Scholar
  40. 40.
    A. Soldera, Polymer 43, 4269 (2002).CrossRefGoogle Scholar
  41. 41.
    A. Soldera, N. Metatla, A. Beaudoin, S. Said, Y. Grohens, Polymer 51, 2106 (2010).CrossRefGoogle Scholar
  42. 42.
    W. Götze, L. Sjogren, Rep. Prog. Phys. 55, 241 (1992).ADSCrossRefGoogle Scholar
  43. 43.
    J. Baschnagel, C. Bennemann, W. Paul, K. Binder, J. Phys.: Condens. Matter 12, 6365 (2000).ADSCrossRefGoogle Scholar
  44. 44.
    L. Sperling, Introduction to Physical Polymer Science (John Wiley & Sons, New York, 1992).Google Scholar
  45. 45.
    D. Cangialosi, A. Alegría, J. Colmenero, Europhys. Lett. 70, 614 (2005).ADSCrossRefGoogle Scholar
  46. 46.
    B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Science 274, 752 (1996).ADSCrossRefGoogle Scholar
  47. 47.
    C. Bennemann, J. Baschnagel, W. Paul, K. Binder, Comput. Theor. Polym. Sci. 9, 217 (1999).CrossRefGoogle Scholar
  48. 48.
    A. Saiter, L. Delbreilh, H. Couderc, K. Arabeche, A. Schönhals, J.M. Saiter, Phys. Rev. E 81, 041805 (2010).ADSCrossRefGoogle Scholar
  49. 49.
    F.W. Starr, J.F. Douglas, Phys. Rev. Lett. 106, 115702 (2011).ADSCrossRefGoogle Scholar
  50. 50.
    C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.P. Bouchaud, J. Non-Cryst. Solids 357, 279 (2011).ADSCrossRefGoogle Scholar
  51. 51.
    L. Berthier, G. Biroli, J.P. Bouchaud, L. Cipelletti, D. El Masri, D. L’Hôte, F. Ladieu, M. Pierno, Science 310, 1797 (2005).ADSCrossRefGoogle Scholar
  52. 52.
    R.G. Palmer, D.L. Stein, E. Abrahams, P.W. Anderson, Phys. Rev. Lett. 53, 958 (1984).ADSCrossRefGoogle Scholar
  53. 53.
    F.H. Stillinger, Science 267, 1935 (1995).ADSCrossRefGoogle Scholar
  54. 54.
    F. Sciortino, J. Stat. Mech.: Theory Exp. 5, P050515 (2005).Google Scholar
  55. 55.
    A. Widmer-Cooper, P. Harrowell, Phys. Rev. Lett. 96, 185701 (2006).ADSCrossRefGoogle Scholar
  56. 56.
    S.U. Boyd, R.H. Boyd, Macromolecules 34, 7219 (2001).ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Département de ChimieUniversité de SherbrookeQuébecCanada

Personalised recommendations