Advertisement

Bethe-Peierls approximation for linear monodisperse polymers re-examined

  • F. F. SemeriyanovEmail author
  • G. Heinrich
Regular Article
  • 68 Downloads
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract

Bethe-Peierls approximation, as it applies to the thermodynamics of polymer melts, is reviewed. We compare the computed configurational entropy of monodisperse linear polymer melt with Monte Carlo data available in the literature. An estimation of the configurational contribution to the total liquid’s C p is presented. We also discuss the relation between the Kauzmann paradox and polymer semiflexibility.

Keywords

Entropy Monte Carlo Surface Site Cayley Tree Occupied Site 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    W. Kauzmann, Chem. Rev. 43, 219 (1948).CrossRefGoogle Scholar
  2. 2.
    J.H. Gibbs, E.A. DiMarzio, J. Chem. Phys. 28, 373 (1958).ADSCrossRefGoogle Scholar
  3. 3.
    P.D. Gujrati, J. Phys. A: Math. Gen. 13, L437 (1980).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    P.D. Gujrati, M. Goldstein, J. Chem. Phys. 74, 2596 (1981).MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    P.D. Gujrati, A. Corsi, Phys. Rev. Lett. 87, 025701 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    A. Corsi, P.D. Gujrati, Phys. Rev. E. 68, 031502 (2003).ADSCrossRefGoogle Scholar
  7. 7.
    P.D. Gujrati, cond-mat/0309143Google Scholar
  8. 8.
    K.F. Freed, J. Dudowicz, Adv. Polym. Sci. 183, 63 (2005).CrossRefGoogle Scholar
  9. 9.
    J. Dudowicz, K.F. Freed, J.F. Douglas, J. Chem. Phys. 124, 064901 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    M. Goldstein, J. Chem. Phys. 51, 3728 (1968).ADSCrossRefGoogle Scholar
  11. 11.
    P.D. Gujrati, Symmetry 2, 1201 (2010).MathSciNetCrossRefGoogle Scholar
  12. 12.
    P.D. Gujrati, Phys. Rev. E 81, 051130 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    G.P. Johari, J. Khouri, J. Chem. Phys. 134, 044525 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    P.J. Flory, Proc. R. Soc. London, Ser. A 234, 60 (1956).ADSCrossRefGoogle Scholar
  15. 15.
    P.J. Flory, Proc. Natl. Acad. Sci. U.S.A. 79, 4510 (1982).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    H.A. Bethe, Proc. Roy. Soc. A 150, 552 (1935).ADSzbMATHCrossRefGoogle Scholar
  17. 17.
    R. Peierls, Proc. R. Soc. London, Ser. A 154, 207 (1936).ADSzbMATHCrossRefGoogle Scholar
  18. 18.
    T.S. Chang, Proc. Cambridge Philos. Soc. 35, 265 (1939).ADSCrossRefGoogle Scholar
  19. 19.
    P.J. Flory, J. Chem. Phys. 10, 51 (1942).ADSCrossRefGoogle Scholar
  20. 20.
    M.I. Huggins, Ann. (N.Y.) Acad. Sci. 43, 1 (1942).ADSCrossRefGoogle Scholar
  21. 21.
    A.R. Miller, Proc. Cambridge Philos. Soc. 38, 109 (1941).ADSCrossRefGoogle Scholar
  22. 22.
    A.R. Miller, Proc. Cambridge Philos. Soc. 39, 54 (1943).ADSCrossRefGoogle Scholar
  23. 23.
    J.-H. Ryu, P.D. Gujrati, J. Chem. Phys. 107, 3954 (1997).ADSCrossRefGoogle Scholar
  24. 24.
    J.K. Roberts, Proc. Roy. Soc. A 161, 141 (1937).ADSCrossRefGoogle Scholar
  25. 25.
    I.C. Sanchez, R.H. Lacombe, J. Phys. Chem. 80, 2352 (1976).CrossRefGoogle Scholar
  26. 26.
    R.H. Lacombe, I.C. Sanchez, J. Phys. Chem. 80, 2568 (1976).CrossRefGoogle Scholar
  27. 27.
    I.C. Sanchez, in Polymer Blends Vol. 1, edited by D.R. Paul, S. Newman (Academic Press, New York, 1978).Google Scholar
  28. 28.
    I.C. Sanchez, R.H. Lacombe, Macromolecules 11, 1145 (1978).ADSCrossRefGoogle Scholar
  29. 29.
    M. Dávila, F. Romá, J.L. Riccardo, A.J. Ramirez-Pastor, Surf. Sci. 600, 2011 (2006).ADSCrossRefGoogle Scholar
  30. 30.
    A.I. Chervanyov, G. Heinrich, J. Chem. Phys. 129, 074902 (2008).ADSCrossRefGoogle Scholar
  31. 31.
    A.I. Chervanyov, G. Heinrich, J. Chem. Phys. 125, 084703 (2006).ADSCrossRefGoogle Scholar
  32. 32.
    P.D. Gujrati, M. Chhajer, J. Chem. Phys. 106, 5599 (1997).ADSCrossRefGoogle Scholar
  33. 33.
    M. Chhajer, P.D. Gujrati, J. Chem. Phys. 106, 8101 (1997).ADSCrossRefGoogle Scholar
  34. 34.
    M. Chhajer, P.D. Gujrati, J. Chem. Phys. 106, 9799 (1997).ADSCrossRefGoogle Scholar
  35. 35.
    D. Huang, S.L. Simon, G.B. McKenna, J. Chem. Phys. 119, 3590 (2003).ADSCrossRefGoogle Scholar
  36. 36.
    D. Huang, S.L. Simon, G.B. McKenna, J. Chem. Phys. 122, 084907 (2005).ADSCrossRefGoogle Scholar
  37. 37.
    G.P. Johari, E. Tombari, S. Presto, G. Salvetti, J. Chem. Phys. 117, 5086 (2002).ADSCrossRefGoogle Scholar
  38. 38.
    E.A. Di Marzio, F. Dowell, J. Appl. Phys. 50, 6061 (1979).ADSCrossRefGoogle Scholar
  39. 39.
    G.P. Johari, J. Chem. Phys. 126, 114901 (2007).ADSCrossRefGoogle Scholar
  40. 40.
    E. Tombari, C. Ziparo, G. Salvetti, G.P. Johari, J. Chem. Phys. 127, 014905 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    E. Tombari, C. Ferrari, G. Salvetti, G.P. Johari, Phys. Rev. B 78, 144203 (2008).ADSCrossRefGoogle Scholar
  42. 42.
    E.A. Di Marzio, J.H. Gibbs, P.D. Fleming III, I.C. Sanchez, Macromolecules 9, 763 (1976).ADSCrossRefGoogle Scholar
  43. 43.
    G.E. Schröder-Turk, W. Mickel, M. Schröter, G.W. Delaney, M. Saadatfar, T.J. Senden, K. Mecke, T. Aste, EPL 90, 34001 (2010).ADSCrossRefGoogle Scholar
  44. 44.
    F. Semeriyanov, M. Saphiannikova, G. Heinrich, J. Phys. A: Math. Theor. 42, 465001 (2009).MathSciNetADSCrossRefGoogle Scholar
  45. 45.
    S.F. Edwards, T. Vilgis, in Physics of Disordered Materials, edited by D. Adler, H. Fritzsche, S.R. Ovshinsky (Plenum Press, New York, 1985).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Leibniz Institute of Polymer Research DresdenDresdenGermany

Personalised recommendations