Tagged-particle motion in glassy systems under shear: Comparison of mode coupling theory and Brownian dynamics simulations

Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract

We study the dynamics of a tagged particle in a glassy system under shear. The recently developed integration through transients approach, based on mode coupling theory, is continued to arrive at the equations for the tagged-particle correlators and the mean squared displacements. The equations are solved numerically for a two-dimensional system, including a nonlinear stability analysis of the glass solution, the so called β-analysis. We perform Brownian Dynamics simulations in 2D and compare with theory. After switch on, transient glassy correlation functions show strong fingerprints of the stress overshoot scenario, including, additionally to previously studied superexponential decay, a shoulder-like slowing down after the overshoot. We also find a new type of Taylor dispersion in glassy states which has intriguing similarity to the known low-density case. The theory qualitatively captures most features of the simulations with quantitative deviations concerning the shear-induced time scales. We attribute these deviations to an underestimation of the overshoot scenario in the theory.

References

  1. 1.
    E.D. Elrick, Austral. J. Phys. 15, 283 (1962).ADSCrossRefGoogle Scholar
  2. 2.
    J.F. Morris, J.F. Brady, J. Fluid. Mech. 312, 223 (1996).ADSMATHCrossRefGoogle Scholar
  3. 3.
    R. Besseling, E.R. Weeks, A.B. Schofield, W.C.K. Poon, Phys. Rev. Lett. 99, 028301 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    K. Miyazaki, D.R. Reichman, R. Yamamoto, Phys. Rev. E 70, 011501 (2004).ADSCrossRefGoogle Scholar
  5. 5.
    F. Varnik, Complex Systems, edited by M. Tokuyama, I. Oppenheim (American Institute of Physics, 2008) p. 160Google Scholar
  6. 6.
    J. Zausch, J. Horbach, M. Laurati, S. Egelhaaf, J.M. Brader, Th. Voigtmann, M. Fuchs, J. Phys.: Condens. Matter 20, 404210 (2008).CrossRefGoogle Scholar
  7. 7.
    D.R. Foss, J.F. Brady, J. Fluid. Mech. 410, 243 (1999).ADSCrossRefGoogle Scholar
  8. 8.
    C. Eisenmann, C. Kim, J. Mattsson, D.A. Weitz, Phys. Rev. Lett. 104 (2010).Google Scholar
  9. 9.
    A. Sierou, J.F. Brady, J. Fluid. Mech. 506, 285 (2004).ADSMATHCrossRefGoogle Scholar
  10. 10.
    M. Krüger, F. Weysser, T. Voigtmann, Phys. Rev. E 81, 061506 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier, Amsterdam, 1996).Google Scholar
  12. 12.
    M. Fuchs, M.E. Cates, J. Phys.: Condens. Matter 17, 1681 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    H. Risken, The Fokker-Planck Equation (Springer, Berlin, 1984).Google Scholar
  14. 14.
    W. Götze, Liquids, Freezing and Glass Transition, edited by J.-P. Hansen, D. Levesque, J. Zinn-Justin (Elsevier, Amsterdam, 1991) p. 287Google Scholar
  15. 15.
    M. Fuchs, M.E. Cates, J. Rheol. 53, 957 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    M. Fuchs, Adv. Polym. Sci. 236, 55 (2010).CrossRefGoogle Scholar
  17. 17.
    R. Zwanzig, Nonequilibrium Statistical Mechanics (Oxford University Press, 2001).Google Scholar
  18. 18.
    K. Kawasaki, J.D. Gunton, Phys. Rev. A 8, 2048 (1973).ADSCrossRefGoogle Scholar
  19. 19.
    K. Kawasaki, Physica A 215, 61 (1995).ADSCrossRefGoogle Scholar
  20. 20.
    B. Cichocki, W. Hess, Physica A 141, 475 (1987).ADSCrossRefGoogle Scholar
  21. 21.
    F.G. Tricomi, Integral Equations (Interscience Publishers, New York, 1957).Google Scholar
  22. 22.
    M. Fuchs, W. Götze, M.R. Mayr, Phys. Rev. E 58, 3384 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    S.H. Chong, B. Kim, Phys. Rev. E 79, 021203 (2009).MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids, 2nd ed. (Academic Press, London, 1986).Google Scholar
  25. 25.
    T. Franosch, W. Götze, J. Phys.: Condens. Matter 6, 4807 (1994).ADSCrossRefGoogle Scholar
  26. 26.
    W. Götze, L. Sjögren, J. Math. Anal. Appl. 195, 230 (1995).MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    O. Henrich, F. Weysser, M.E. Cates, M. Fuchs, Phil. Trans. R. Soc. A 367, 5033 (2009).ADSMATHCrossRefGoogle Scholar
  28. 28.
    M. Bayer, J.M. Brader, F. Ebert, M. Fuchs, E. Lange, G. Maret, R. Schilling, M. Sperl, J.P. Wittmer, Phys. Rev. E 76, 011508 (2007).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    M. Fuchs, M.E. Cates, Faraday Discuss. 123, 267 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    D. Hajnal, M. Fuchs, Eur. Phys. J. E 28, 125 (2009).CrossRefGoogle Scholar
  31. 31.
    T. Franosch, M. Fuchs, W. Götze, M.R. Mayr, A.P. Singh, Phys. Rev. E 55, 7153 (1997).ADSCrossRefGoogle Scholar
  32. 32.
    W. Götze, Z. Phys. B 60, 195 (1985).ADSCrossRefGoogle Scholar
  33. 33.
    O. Henrich, O. Pfeifroth, M. Fuchs, J. Phys.: Condens. Matter 19, 205132 (2007).ADSCrossRefGoogle Scholar
  34. 34.
    J. Bergenholtz, J.F. Brady, M. Vivic, J. Fluid Mech. 456, 239 (2002).ADSMATHCrossRefGoogle Scholar
  35. 35.
    J. Vermant, M.J. Solomon, J. Phys.: Condens. Matter 17, R187 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    Th. Voigtmann, A.M. Puertas, M. Fuchs, Phys. Rev. E 70, 061506 (2004).ADSCrossRefGoogle Scholar
  37. 37.
    M. Krüger, M. Fuchs, Prog. Theor. Phys. Suppl. 184, 172 (2010).ADSMATHCrossRefGoogle Scholar
  38. 38.
    M. Krüger, M. Fuchs, Phys. Rev. Lett. 102, 135701 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    A. Scala, T. Voigtmann, C. De Michele, J. Chem. Phys. 126, 134109 (2002).ADSCrossRefGoogle Scholar
  40. 40.
    F. Weysser, D. Hajnal, Phys. Rev. E 83, 041503 (2011).ADSCrossRefGoogle Scholar
  41. 41.
    D. Hajnal, private communication (2011).Google Scholar
  42. 42.
    F. Weysser, in preparation (2011).Google Scholar
  43. 43.
    G. Doetsch, Einführung in Theorie und Anwendung der Laplace-Transformation (Birkhäuser, Stuttgart, 1970).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität KonstanzKonstanzGermany

Personalised recommendations