Advertisement

Kinetic fragility of binary and ternary glass forming liquid mixtures

  • Hongxiang Gong
  • Mingdao Sun
  • Zijing Li
  • Riping Liu
  • Yongjun Tian
  • Li-Min WangEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue on the Physics of Glasses

Abstract

The experimental studies of liquid fragility in miscible binary and ternary glass forming mixtures reveal a general observation of the negative deviation in fragility upon mixing from the linear average of those of the components. Further analyses from ideal, near ideal to non-ideal mixing modes show that the deviation magnitude does not increase monotonically with mixing enthalpy, and a moderate intermolecular interaction would generate a largest reduction in fragility. Four eutectic systems, methyl-o-toluate-methyl-p-toluate, ZnCl2-AlCl3, glycerol-water, and fructose-water, are studied to locate the composition where the largest fragility deviation occurs in phase diagrams. It is found that the compositions with the fragility minima do not coincide with the eutectic points. The results partly explain the experimental observation that the best glass forming region is not located at the eutectic composition.

Keywords

Bulk Metallic Glass Composition Dependence Glass Formation Eutectic Point Eutectic System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    C.A. Angell, J.M. Sare, E.J. Sare, J. Phys. Chem. 82, 2622 (1978).CrossRefGoogle Scholar
  2. 2.
    J.M. Gordon, G.B. Rouse, J.H. Gibbs, W.M. Risen, J. Chem. Phys. 66, 4971 (1977).ADSCrossRefGoogle Scholar
  3. 3.
    P.R. Couchman, Nature (London) 298, 729 (1982).ADSCrossRefGoogle Scholar
  4. 4.
    Th. Blochowicz, C. Karle, A. Kudlik, P. Medick, I. Roggatz, M. Vogel, Ch. Tschirwitz, J. Wolber, J. Senker, E. Rössler, J. Phys. Chem. B 103, 4032 (1999).CrossRefGoogle Scholar
  5. 5.
    A.L. Greer, Nature (London) 366, 303 (1993).ADSCrossRefGoogle Scholar
  6. 6.
    G. Foffi, W. Gotze, F. Sciortino, P. Tartaglia, Th. Voigtmann, Phys. Rev. Lett. 91, 085701 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    P.K. Gupta, J.C. Mauro, J. Chem. Phys. 130, 094503 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    A. Inoue, Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
  9. 9.
    D. Turnbull, Contemp. Phys. 10, 473 (1969).ADSCrossRefGoogle Scholar
  10. 10.
    L.-M. Wang, Z. Li, Z. Chen, Y. Zhao, R. Liu, Y. Tian, J. Phys. Chem. B 114, 12080 (2010).CrossRefGoogle Scholar
  11. 11.
    O.N. Senkov, Phys. Rev. B 76, 104202 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    E.S. Park, J.H. Na, D.H. Kim, Appl. Phys. Lett. 91, 031907 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000).ADSCrossRefGoogle Scholar
  14. 14.
    S. Sastry, Nature (London) 409, 164 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    L.M. Wang, R. Richert, Phys. Rev. Lett. 99, 185701 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    L.-M. Wang, Y. Tian, R. Liu, Appl. Phys. Lett. 97, 181901 (2010).ADSCrossRefGoogle Scholar
  17. 17.
    H. Senapati, R.K. Kadiyala, C.A. Angell, J. Phys. Chem. 95, 7050 (1991).CrossRefGoogle Scholar
  18. 18.
    L. Battezzati, A.L. Greer, Acta Metall. 37, 1791 (1989).CrossRefGoogle Scholar
  19. 19.
    S. Mukherjee, Z. Zhou, J. Schroers, W.L. Johnson, W.K. Rhim, Appl. Phys. Lett. 84, 5010 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    S. Mukherjee, J. Schroers, W.L. Johnson, W.-K. Rhim, Phys. Rev. Lett. 94, 245501 (2005).ADSCrossRefGoogle Scholar
  21. 21.
    S. Kojima, V.N. Novikov, M. Kodama, J. Chem. Phys. 113, 6344 (2000).ADSCrossRefGoogle Scholar
  22. 22.
    R. Fabian Jr., D.L. Sidebottom, Phys. Rev. B 80, 064201 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    P.G. Santangelo, C.M. Roland, K.L. Ngai, A.K. Rizos, H. Katerinopoulos, J. Non-Cryst. Solids 172-174, 1084 (1994).ADSCrossRefGoogle Scholar
  24. 24.
    M. Cutroni, A. Mandanici, L. De Francesco, J. Non-Cryst. Solids 307-310, 449 (2002).ADSCrossRefGoogle Scholar
  25. 25.
    W. Huang, S. Shahriari, R. Richert, J. Chem. Phys. 123, 164504 (2005).ADSCrossRefGoogle Scholar
  26. 26.
    A. Minoguchi, K. Kitai, R. Nozaki, Phys. Rev. E 68, 031501 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    M.S. Beevers, J. Crossley, D.C. Garrington, G. Williams, J. Chem. Soc. Fraday Trans. 73, 458 (1977).CrossRefGoogle Scholar
  28. 28.
    B. Gerharz, G. Meier, E.W. Fischer, J. Chem. Phys. 92, 7110 (1990).ADSCrossRefGoogle Scholar
  29. 29.
    L.-M. Wang, Y. Tian, R. Liu, R. Richert, J. Phys. Chem. B 144, 3618 (2010).CrossRefGoogle Scholar
  30. 30.
    L.-M. Wang, Y. Zhao, M. Sun, R. Liu, Y. Tian, Phys. Rev. E 82, 062502 (2010).ADSCrossRefGoogle Scholar
  31. 31.
    C.A. Angell, Chem. Rev. 102, 2627 (2002).CrossRefGoogle Scholar
  32. 32.
    E.J. Sutter, C.A. Angell, J. Phys. Chem. 75, 1826 (1971).CrossRefGoogle Scholar
  33. 33.
    A. Mùgica, M.E. Calahorra, M. Cortázar, Macromol. Chem. Phys. 203, 1088 (2002).CrossRefGoogle Scholar
  34. 34.
    A.V. Lesikar, J. Phys. Chem. 80, 1005 (1976).CrossRefGoogle Scholar
  35. 35.
    A.V. Lesikar, J. Chem. Phys. 66, 4263 (1977).ADSCrossRefGoogle Scholar
  36. 36.
    K. Takeda, O. Yamamuro, H. Suga, J. Therm. Anal. 38, 1847 (1992).CrossRefGoogle Scholar
  37. 37.
    K. Takeda, K. Murata, S. Yamashita, J. Non-Cryst. Solids 231, 273 (1998).ADSCrossRefGoogle Scholar
  38. 38.
    K. Takeda, K. Murata, S. Yamashita, J. Phys. Chem. B 103, 3457 (1998).CrossRefGoogle Scholar
  39. 39.
    G.G. Naumis, Phys. Rev. B 73, 172202 (2006).ADSCrossRefGoogle Scholar
  40. 40.
    K. Duvvuri, R. Richert, J. Phys. Chem. B 108, 10451 (2004).CrossRefGoogle Scholar
  41. 41.
    L.-M. Wang, R. Richert, J. Phys. Chem. B 109, 11091 (2005).CrossRefGoogle Scholar
  42. 42.
    K. Putz, P.F. Green, J. Non-Cryst. Solids 337, 254 (2004).ADSCrossRefGoogle Scholar
  43. 43.
    L.A. Shadowspeaker, R. Busch, Appl. Phys. Lett. 85, 2508 (2004).ADSCrossRefGoogle Scholar
  44. 44.
    H.-J. Fecht, W.L. Johnson, Mater. Sci. Eng. A 375-377, 2 (2004).CrossRefGoogle Scholar
  45. 45.
    S. Pedersen, Viscosity, structure and glass formation in the AlCl_3-ZnCl_2 system, PhD thesis, Norges Teknisknaturvitenskaplige Universitet, Avhandling NR (2001).Google Scholar
  46. 46.
    Q. Qin, G.B. McKenna, J. Non-Cryst. Solids 352, 2977 (2006).ADSCrossRefGoogle Scholar
  47. 47.
    D. Cubicciotti, H. Eding, J. Chem. Phys. 40, 978 (1994).ADSCrossRefGoogle Scholar
  48. 48.
    P. Patnaik (Editor), Handbook of Inorganic Materials (McGraw-Hill, New York, 2003).Google Scholar
  49. 49.
    S. Jabrane, J.M. Letoffe, J.J. Counioux, P. Claudy, Thermochim. Acta 290, 31 (1996).CrossRefGoogle Scholar
  50. 50.
    S. Sudo, M. Shimomura, N. Shinyashiki, S. Yagihara, J. Non-Cryst. Solids 307-310, 356 (2002).ADSCrossRefGoogle Scholar
  51. 51.
    P. Walstra, Physical Chemistry of Foods (Marcel Dekker Inc. New York, 2001).Google Scholar
  52. 52.
    P.M. Mehl, Thermochim. Acta 324, 215 (1998).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hongxiang Gong
    • 1
  • Mingdao Sun
    • 1
  • Zijing Li
    • 1
  • Riping Liu
    • 1
  • Yongjun Tian
    • 1
  • Li-Min Wang
    • 1
    Email author
  1. 1.State Key Lab of Metastable Materials Science and Technology, and College of Materials Science and EngineeringYanshan UniversityHebeiChina

Personalised recommendations