How do mosquito eggs self-assemble on the water surface?

  • J. C. Loudet
  • B. Pouligny
Regular Article


This work reports a detailed numerical study of the behavior of ellipsoid-shaped particles adsorbed at fluid interfaces. Former experiments have shown that micrometer-sized prolate ellipsoids aggregate under the action of strong and long-ranged capillary interactions. The latter are due to nonplanar contact lines and to the resulting deformations of the interface in the vicinity of the trapped objects. We first consider the case of a single ellipsoid and examine in detail the influence of contact angle and ellipsoid aspect ratio on interfacial distortions. We then focus on two contacting ellipsoids and study the optimum packing configuration depending on their size and/or aspect ratio mismatch. We thoroughly explore the variety of contact configurations between both ellipsoids and provide corresponding energy maps. Whereas the side-by-side configuration is the most stable state for identical ellipsoids, we find that the mismatched pair adopts an “arrow” configuration in which a finite angle exists between the particles long axes. Such arrows are actually seen in experiments with micron-sized ellipsoids and similarly with millimeter-sized mosquito eggs. These results complement our previous work (J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)) and highlight the importance of geometrical factors to explain the morphology of aggregated structures at fluid interfaces.


Contact Angle Contact Line Ellipsoidal Particle Pickering Emulsion Quadrupolar Symmetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Courtesy of J.F. Franetich, INSERM U511 - Université Paris 6, Faculté de médecine La Pitié-SalpêtrièreGoogle Scholar
  2. 2.
    A zoomed-in view of a mosquito egg reveals the presence of two side floats (anchored along the egg long axis) which may prevent it from sinkingGoogle Scholar
  3. 3.
    P. Pieranski, Phys. Rev. Lett. 45, 569 (1980)ADSCrossRefGoogle Scholar
  4. 4.
    K. Zahn, R. Lenke, G. Maret, Phys. Rev. Lett. 82, 2721 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    S. Reynaert, P. Moldenaers, J. Vermant, Langmuir 22, 4936 (2006)CrossRefGoogle Scholar
  6. 6.
    S.U. Pickering, J. Chem. Soc. 91, 2001 (1907)CrossRefGoogle Scholar
  7. 7.
    R. Aveyard, B.P. Binks, J.H. Clint, Adv. Colloid Interface Sci. 100-102, 503 (2003)CrossRefGoogle Scholar
  8. 8.
    B.P. Binks, Phys. Chem. Chem. Phys. 9, 6298 (2007)CrossRefGoogle Scholar
  9. 9.
    A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    C. Zeng, H. Bissig, A.D. Dinsmore, Solid State Commun. 139, 547 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kleman, O.D. Lavrentovich, Soft Matter Physics (Springer, New York, 2003)Google Scholar
  12. 12.
    M.M. Nicolson, Proc. Cambridge Philos. Soc. 45, 288 (1949)ADSzbMATHCrossRefGoogle Scholar
  13. 13.
    D.Y. Chan, J.D. Henry, L.R. White, J. Colloid Interface Sci. 79, 410 (1981)CrossRefGoogle Scholar
  14. 14.
    V.N. Paunov, P.A. Kralchevsky, N.D. Denkov, K. Nagayama, J. Colloid Interface Sci. 157, 100 (1993)CrossRefGoogle Scholar
  15. 15.
    C. Allain, M. Cloitre, J. Colloid Interface Sci. 157, 261 (1993) 269CrossRefGoogle Scholar
  16. 16.
    D. Vella, L. Mahadevan, Am. J. Phys. 73, 814 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    R. Aveyard et al., Phys. Rev. Lett. 88, 246102 (2002)ADSCrossRefGoogle Scholar
  18. 18.
    M.G. Nikolaides, A.R. Bausch, M.F. Hsu, A.D. Dinsmore, M. Brenner, C. Gay, D.A. Weitz, Nature 420, 299 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    T.S. Horozov, R. Aveyard, J.H. Clint, B.P. Binks, Langmuir 19, 2822 (2003)CrossRefGoogle Scholar
  20. 20.
    M. Megens, J. Aizenberg, Nature (London) 424, 1014 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    L. Foret, A. Würger, Phys. Rev. Lett. 92, 058302 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    M. Oettel, A. Dominguez, S. Dietrich, Phys. Rev. E 71, 051401 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    A. Würger, L. Foret, J. Phys. Chem. B 109, 16435 (2005)CrossRefGoogle Scholar
  24. 24.
    M. Oettel, A. Dominguer, S. Dietrich, J. Phys.: Condens. Matter 17, L337 (2005)ADSCrossRefGoogle Scholar
  25. 25.
    K.D. Danov, P.A. Ktalchevsky, M.P. Boneva, Langmuir 22, 2653 (2006)CrossRefGoogle Scholar
  26. 26.
    M.E. Leunissen, A. van Blaaderen, A.D. Hollingsworth, M.T. Sullivan, P.M. Chaikin, Proc. Natl. Acad. Sci. U.S.A. 104, 2585 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    M.P. Boneva, K.D. Danov, N.C. Christov, P.A. Kralchevsky, Langmuir 25, 9129 (2009)CrossRefGoogle Scholar
  28. 28.
    K.P. Velikov, F. Durst, O.D. Velev, Langmuir 14, 1148 (1998)CrossRefGoogle Scholar
  29. 29.
    P.A. Kralchevsky, K. Nagayama, Adv. Colloid Interface Sci. 85, 145 (2000)CrossRefGoogle Scholar
  30. 30.
    K.D. Danov, B. Pouligny, P.A. Kralchevsky, Langmuir 17, 6599 (2001)CrossRefGoogle Scholar
  31. 31.
    R. Di Leonardo, F. Saglimbeni, G. Ruocco, Phys. Rev. Lett. 100, 106103 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    D. Stamou, C. Duschl, D. Johannsmann, Phys. Rev. E 62, 5263 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    P.A. Kralchevsky, N.D. Denkov, K.D. Danov, Langmuir 17, 7694 (2001)CrossRefGoogle Scholar
  34. 34.
    J.-B. Fournier, P. Galatola, Phys. Rev. E 65, 031601 (2002)ADSCrossRefGoogle Scholar
  35. 35.
    K.D. Danov, P.A. Kralchevsky, B.N. Naydenov, G. Brenn, J. Colloid Interface Sci. 287, 121 (2005)CrossRefGoogle Scholar
  36. 36.
    J. Lucassen, Colloids Surf. 65, 131 (1992)CrossRefGoogle Scholar
  37. 37.
    A.B.D. Brown, C.G. Smith, A.R. Rennie, Phys. Rev. E 62, 951 (2000)ADSCrossRefGoogle Scholar
  38. 38.
    E.A. van Nierop, M.A. Stijnman, S. Hilgenfeldt, Europhys. Lett. 72, 671 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    J.C. Loudet, A.M. Alsayed, J. Zhang, A.G. Yodh, Phys. Rev. Lett. 94, 018301 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    J.C. Loudet, A.G. Yodh, B. Pouligny, Phys. Rev. Lett. 97, 018304 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    H. Lehle, E. Noruzifar, M. Oettel, Eur. Phys. J. E 26, 151 (2008)CrossRefGoogle Scholar
  42. 42.
    E.P. Lewandowski, J.A. Bernate, P.C. Searson, K.J. Stebe, Langmuir 24, 9302 (2008)CrossRefGoogle Scholar
  43. 43.
    E.P. Lewandowski, J.A. Bernate, A. Tseng, P.C. Searson, K.J. Stebe, Soft Matter 5, 886 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    J.C. Loudet, B. Pouligny, Europhys. Lett. 85, 28003 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    B. Madivala, J. Fransaer, J. Vermant, Langmuir 25, 2718 (2009)CrossRefGoogle Scholar
  46. 46.
    M. Oettel, S. Dietrich, Langmuir 24, 1425 (2008)CrossRefGoogle Scholar
  47. 47.
    J.A. Champion, Y.K. Katare, S. Mitragotri, Proc. Natl. Acad. Sci. U.S.A. 104, 11901 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    K.J. Lee, J. Yoon, J. Lahann, Curr. Opin. Colloid Interface Sci. 16, 195 (2011)CrossRefGoogle Scholar
  49. 49.
    S. Sacanna, D.J. Pine, Curr. Opin. Colloid Interface Sci. 16, 96 (2011)CrossRefGoogle Scholar
  50. 50.
    D.B. Wolfe, A. Snead, C. Mao, N.B. Bowden, G.M. Whitesides, Langmuir 19, 2206 (2003)CrossRefGoogle Scholar
  51. 51.
    K.J. Stebe, E. Lewandowski, M. Ghosh, Science 325, 159 (2009)CrossRefGoogle Scholar
  52. 52.
    A. Dominguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    R. Finn, Equilibrium Capillary Surfaces (Springer-Verlag, 1986)Google Scholar
  54. 54.
    C. Pozrikidis, Boundary Element Methods (Chapman & Hall/CRC, 2002)Google Scholar
  55. 55.
    In our model, the assumption of small interface slopes starts to break down at the ellipsoid tips for $k>6$ and $\theta_c$ close to its maximum value. Indeed, $|\nabla u_c|>0.3$, which is no longer negligible with respect to unity. The full nonlinear Young-Laplace equation of capillarity would be required for more precise computationsGoogle Scholar
  56. 56.
    The darker regions within the dashed elliptical curve in fig. fig2a are due to (inevitable) unwrapping phase errors (see ghiglia,robinson). The latter occur because of a complex interference pattern (in this region only) combining reflections coming from both solid-air and solid-water interfacesGoogle Scholar
  57. 57.
    D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping (John Wiley & Sons, 1998)Google Scholar
  58. 58.
    D.W. Robinson, G.T. Reid, Interferogram Analysis (Institute of Physics Publishing, 1995)Google Scholar
  59. 59.
    J. Yang, Felicity R.A.J. Rose, N. Gadegaard, M.R. Alexander, Langmuir 25, 2567 (2009)CrossRefGoogle Scholar
  60. 60.
    W. Chen, S. Tan, T.-K. Ng, W.T. Ford, P. Tong, Phys. Rev. Lett. 95, 218301 (2005)ADSCrossRefGoogle Scholar
  61. 61.
    W. Chen, S. Tan, Z. Huang, T.-K. Ng, W.T. Ford, P. Tong, Phys. Rev. E 74, 021406 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    In the energy maps of fig. umaps, the typical numerical error for the energy is about $4\cdot10^6k_BT$. As mentioned in the text, this means that shallow wells or hills in the map are not significant or physically relevant. The amplitude of the numerical error is mainly due to the coarse sampling in $\psi_2$Google Scholar
  63. 63.
    A typical calculation for an ellipsoids pair takes about several minutes to converge on our old DIGITAL AlphaServer DS20 500MHz machineGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Université Bordeaux 1, CNRSCentre de Recherche Paul PascalPessacFrance

Personalised recommendations