A change in boundary conditions induces a discontinuity of tissue flow in chicken embryos and the formation of the cephalic fold

  • V. FleuryEmail author
Regular Article


The morphogenesis of vertebrate body parts remains an open question. It is not clear whether the existence of different structures, such as a head, can be addressed by fundamental laws of tissue movement and deformation, or whether they are only a sequence of stop-and-go genetic instructions. I have filmed by time-lapse microscopy the formation of the presumptive head territory in chicken embryos. I show that the early lateral evagination of the eye cups and of the mesencephalic plate is a consequence of a sudden change in boundary conditions of the initial cell flow occurring in these embryos. Due to tissue flow, and collision of the two halves of the embryo, the tissue sheet movement is first dipolar, and next quadrupolar. In vivo air puff tonometry reveals a simple visco-elastic behaviour of the living material. The jump from a dipolar to a quadrupolar flow changes the topology of the early morphogenetic field which is observed towards a complex vortex winding with a trail (the eye cups and brain folds). The hydrodynamical model accounts for the discontinuity of the vector field at the moment of collision of the left and right halves of the embryo, at a quantitative level. This suggests a possible mechanism for the morphogenesis of the head of amniotes, as compared to cephalochordates and anamniotes.


Neural Tube Neural Crest Force Term Chicken Embryo Median Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10189_2011_9613_MOESM1_ESM.gif (12.2 mb)
Supplementary material, approximately 12.1 MB.


  1. 1.
    J. Holtfreter, J. Exp. Zoology 95, 171 (1944).CrossRefGoogle Scholar
  2. 2.
    H.M. Phillips, Amer. Zool. 18, 81 (1978).Google Scholar
  3. 3.
    D.E. Ingberg, Int. J. Dev. Biol. 50, 255 (2006).CrossRefGoogle Scholar
  4. 4.
    J.C. Gerhardt, M. Danilchik, T. Doniach, S. Roberts, B. Rowning, R. Stewart, Development 107, 37 (1989).Google Scholar
  5. 5.
    W. Wilson, N.J.B. Driessen, R.C.C. van Donkelaar, K. Ito, OsteoArthritis and Cartilage 14, 1196 (2006).CrossRefGoogle Scholar
  6. 6.
    V. Fleury, Phys. Rev. E 61, 4156 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    E. Farge, Curr. Biol. 13, 1365 (2003).CrossRefGoogle Scholar
  8. 8.
    M. Unbekandt, P.M. Del Moral, F. Sala, S. Bellusci, D. Warburton, V. Fleury, Mech. Dev. 125, 314 (2008).CrossRefGoogle Scholar
  9. 9.
    A.E.X. Brown, D.E. Discher, Curr. Biol. 19, R781 (2009).CrossRefGoogle Scholar
  10. 10.
    M. Chuai, C. Weijer, Hum. Front. Sci. Program J 3, 71 (2009).Google Scholar
  11. 11.
    E.A. Zamir, B.J. Rongish, C.D. Little, PLoS Biol. 6, e247 (2008).CrossRefGoogle Scholar
  12. 12.
    P. Frield, K. Wolf, J. Cell. Biol. 188, 11 (2009).Google Scholar
  13. 13.
    A.S. Romer, R.S. Parsons, The Vertebrate Body (Saunders College Pub., Philadelphia, 1986).Google Scholar
  14. 14.
    M. Callebaut, E. Van Nueten, H.Bortier, F. Harrisson, J. Morphol. 255, 315 (2003).CrossRefGoogle Scholar
  15. 15.
    R. Wetzel, Vehr. physik.-med. Ges. Würzburg 40, H.5 (1924).Google Scholar
  16. 16.
    R. Ladher, G.C. Schoenwolf, Making a Neural Tube, Developmental Neurobiology, edited by M. Jacobson, M.S. Rao (Springer, Berlin, 2004).Google Scholar
  17. 17.
    K. Shariff, A.A. Leonard, Annu. Rev. Fluid. Mech. 24, 235 (1992).MathSciNetADSCrossRefGoogle Scholar
  18. 18.
    V. Fleury, Organogenesis 2, 1 (2005).CrossRefGoogle Scholar
  19. 19.
    V. Fleury, O.P. Boryskina, A.J.M. Cornelissen, T.-H. Nguyen, M. Unbekandt, L. Leroy, G. Baffet, F. le Noble, O. Sire, E. Lahaye, V. Burgaud, Phys. Rev. E 81, 021920 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    N. Rohani, L. Canty, O. Luu, F. Fagotto, R. Winklbauer, PLoS Biol. 9, e1000597 (2011) doi:10.1371/journal.pbio.1000597 CrossRefGoogle Scholar
  21. 21.
    V. Fleury, Eur. Phys. J., A.P. 45, 30101 (2009).CrossRefGoogle Scholar
  22. 22.
    P.A. Pouille, E. Farge, Phys. Biol. 5, 15005 (2008).ADSCrossRefGoogle Scholar
  23. 23.
    S.R. Yu, M. Burkhardt, M. Nowak, J. Ries, Z. Petrasek, S. Scholpp, P. Schwille, M. Brand, Nature 461, 533 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    S.C. Morris, The Crucible of Creation: The Burgess Shale and the Rise of Animals (Oxford University Press, New York, 1998).Google Scholar
  25. 25.
    C. Darwin, On the origin of Species by means of natural selection or the preservation of favoured races in the struggle for life (1859).Google Scholar
  26. 26.
    K. Schugart, C. Kappen, F.H. Ruddle, Proc. Natl. Acad. Sci. U.S.A. 86, 7067 (1989).ADSCrossRefGoogle Scholar
  27. 27.
    F. Marlow, F. Zwartkruis, J. Malicki, S.C.F. Neuhauss, L. Abbas, M. Weaver, W. Driever, L. Solnica-Krezel, Dev. Biol. 203, 382 (1998).CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Laboratoire Matière et Systèmes ComplexesUniversité Paris DiderotParisFrance

Personalised recommendations