Reversible sphere-to-lamellar wetting transition at the interface of a diblock copolymer system

  • J. L. Carvalho
  • M. V. Massa
  • S. L. Cormier
  • M. W. Matsen
  • K. Dalnoki-Veress
Regular Article


We use ellipsometry to investigate a transition in the morphology of a sphere-forming diblock copolymer thin-film system. At an interface the diblock morphology may differ from the bulk when the interfacial tension favours wetting of the minority domain, thereby inducing a sphere-to-lamella transition. In a small, favourable window in energetics, one may observe this transition simply by adjusting the temperature. Ellipsometry is ideally suited to the study of the transition because the additional interface created by the wetting layer affects the polarisation of light reflected from the sample. Here we study thin films of poly(butadiene-ethylene oxide) (PB-PEO), which order to form PEO minority spheres in a PB matrix. As temperature is varied, the reversible transition from a partially wetting layer of PEO spheres to a full wetting layer at the substrate is investigated.


Interfacial Tension Diblock Copolymer Wetting Layer Morphological Transition Interfacial Term 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F.S. Bates, G.H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    G.H. Fredrickson, F.S. Bates, Annu. Rev. Mater. Sci. 26, 501 (1996).ADSCrossRefGoogle Scholar
  3. 3.
    M. Matsen, F. Bates, J. Chem. Phys. 106, 2436 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    M. Matsen, J. Phys.: Condens. Matter 14, R21 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    M. Turner, M. Rubinstein, C. Marques, Macromolecules 27, 4986 (1994).ADSCrossRefGoogle Scholar
  6. 6.
    M. Matsen, J. Chem. Phys. 106, 7781 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    M. Fasolka, A. Mayes, Annu. Rev. Mater. Res. 31, 323 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    P. Green, R. Limary, Adv. Colloid Interface Sci. 94, 53 (2001).CrossRefGoogle Scholar
  9. 9.
    H. Xiang, K. Shin, T. Kim, S. Moon, T. McCarthy, T. Russell, Macromolecules 37, 5660 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    H. Xiang, K. Shin, T. Kim, S. Moon, T. McCarthy, T. Russell, J. Polym. Sci., Part B: Polym. Phys. 43, 3377 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    B. Yu, P. Sun, T. Chen, Q. Jin, D. Ding, B. Li, A. Shi, Phys. Rev. Lett. 96, 138306 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    A. Croll, M. Massa, M. Matsen, K. Dalnoki-Veress, Phys. Rev. Lett. 97, 204502 (2006) ISSN 1079-7114ADSCrossRefGoogle Scholar
  13. 13.
    J. Kim, M. Matsen, Soft Matter 5, 2889 (2009) ISSN 1744-683XCrossRefADSGoogle Scholar
  14. 14.
    T. Kim, J. Huh, C. Park, Macromolecules 43, 5352 (2010) ISSN 0024-9297ADSCrossRefGoogle Scholar
  15. 15.
    H. Tan, D. Yan, A. Shi, Macromolecules 37, 9646 (2004).ADSCrossRefGoogle Scholar
  16. 16.
    P. Mansky, T. Russell, C. Hawker, M. Pitsikalis, J. Mays, Macromolecules 30, 6810 (1997).ADSCrossRefGoogle Scholar
  17. 17.
    E. Huang, P. Mansky, T. Russell, C. Harrison, P. Chaikin, R. Register, C. Hawker, J. Mays, Macromolecules 33, 80 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    H. Huinink, J. Brokken-Zijp, M. Van Dijk, G. Sevink, J. Chem. Phys. 112, 2452 (2000).ADSCrossRefGoogle Scholar
  19. 19.
    H. Yokoyama, T. Mates, E. Kramer, Macromolecules 33, 1888 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    M. Fasolka, P. Banerjee, A. Mayes, G. Pickett, A. Balazs, Macromolecules 33, 5702 (2000).ADSCrossRefGoogle Scholar
  21. 21.
    L. Tsarkova, A. Knoll, G. Krausch, R. Magerle, Macromolecules 39, 3608 (2006).ADSCrossRefGoogle Scholar
  22. 22.
    G. Stein, E. Kramer, X. Li, J. Wang, Macromolecules 40, 2453 (2007).ADSCrossRefGoogle Scholar
  23. 23.
    G. Stein, E. Cochran, K. Katsov, G. Fredrickson, E. Kramer, X. Li, J. Wang, Phys. Rev. Lett. 98, 158302 (2007).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Li, Y. Loo, R. Register, P. Green, Macromolecules 38, 7745 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Huang, H. Chen, T. Hashimoto, Macromolecules 36, 764 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    In order to obtain the sphere radius, we used the strong-stretching theory expression for domain size as described by Matsen and Bates bates1997 with experimental parameters for the sphere radius and volume fractions given for an equivalent system by similar system by Huang and co-workers [25].Google Scholar
  27. 27.
    C. Vasilev, H. Heinzelmann, G. Reiter, J. Polym. Sci., Part B: Polym. Phys. 42, 1312 (2004).ADSCrossRefGoogle Scholar
  28. 28.
    J. Carvalho, M. Massa, K. Dalnoki-Veress, J. Polym. Sci., Part B: Polym. Phys. 44, 3448 (2006).ADSCrossRefGoogle Scholar
  29. 29.
    J. Carvalho, M. Somers, K. Dalnoki-Veress, J. Polym. Sci., Part B: Polym. Phys. 49, 712 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    R. Azzam, N. Bashara, S. Ballard, Phys. Today 31, 72 (1978).CrossRefGoogle Scholar
  31. 31.
    C. Vasilev, G. Reiter, S. Pispas, N. Hadjichristidis, Polymer 47, 330 (2006).CrossRefGoogle Scholar
  32. 32.
    P. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena (Springer-Verlag, New York Inc., 2002).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. L. Carvalho
    • 1
  • M. V. Massa
    • 1
    • 3
  • S. L. Cormier
    • 1
  • M. W. Matsen
    • 2
  • K. Dalnoki-Veress
    • 1
  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada
  2. 2.School of Mathematical and Physical SciencesUniversity of ReadingWhiteknights, ReadingUK
  3. 3.Department of PhysicsUniversity of GuelphGuelphCanada

Personalised recommendations