Advertisement

Dynamics of a polymer chain confined in a membrane

  • S. Ramachandran
  • S. KomuraEmail author
  • K. Seki
  • G. Gompper
Regular Article

Abstract.

We present a Brownian dynamics theory with full hydrodynamics (Stokesian dynamics) for a Gaussian polymer chain embedded in a liquid membrane which is surrounded by bulk solvent and walls. The mobility tensors are derived in Fourier space for the two geometries, namely, a free membrane embedded in a bulk fluid, and a membrane sandwiched by the two walls. Within the preaveraging approximation, a new expression for the diffusion coefficient of the polymer is obtained for the free-membrane geometry. We also carry out a Rouse normal mode analysis to obtain the relaxation time and the dynamical structure factor. For large polymer size, both quantities show Zimm-like behavior in the free-membrane case, whereas they are Rouse-like for the sandwiched membrane geometry. We use the scaling argument to discuss the effect of excluded-volume interactions on the polymer relaxation time.

Keywords

Liquid Membrane Dynamic Structure Factor Gaussian Chain Polymer Size Mobility Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B. Alberts, A. Johnson, P. Walter, J. Lewis, M. Raff, Molecular Biology of the Cell (Garland Science, New York, 2008)Google Scholar
  2. 2.
    R. Peters, R.J. Cherry, Proc. Natl. Acad. Sci. U.S.A. 79, 4317 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    E.A.J. Reitz, J.J. Neefjes, Nat. Cell Biol. 3, E145 (2001)CrossRefGoogle Scholar
  4. 4.
    N. Kahya, E.-I. Pécheur, W.P. de Boeij, D.A. Wiersam, D. Hoekstra, Biophys. J. 81, 1464 (2001)CrossRefGoogle Scholar
  5. 5.
    N. Tsapis, F. Reiss-Husson, R. Ober, M. Genest, R.S. Hodges, W. Urbach, Biophys. J. 81, 1613 (2001)CrossRefGoogle Scholar
  6. 6.
    Y. Gambin, R. Lopez-Esparza, M. Reffay, E. Sierecki, N.S. Gov, M. Genest, R.S. Hodges, W. Urbach, Proc. Natl. Acad. Sci. U.S.A. 103, 2098 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    D.F. Kucik, E.L. Olson, M.P. Sheetz, Biophys. J. 76, 314 (1999)CrossRefGoogle Scholar
  8. 8.
    J. Lippincott-Schwartz, E. Snapp, A. Kenworthy, Nat. Rev. Mol. Cell Biol. 2, 444 (2001)CrossRefGoogle Scholar
  9. 9.
    M. Vrljic, Y. Nishimura, S. Brasselet, W.E. Moerner, H.M. McConnell, Biophys. J. 83, 2681 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Kenworthy, B.J. Nichols, C.L. Remmert, G.M. Hendrix, M. Kumar, J. Zimmerberg, J. Lippincott-Schwartz, J. Cell. Biol. 165, 735 (2004)CrossRefGoogle Scholar
  11. 11.
    P.G. Saffman, M. Delbrück, Proc. Natl. Acad. Sci. U.S.A. 72, 3111 (1975)ADSCrossRefGoogle Scholar
  12. 12.
    P.G. Saffman, J. Fluid Mech. 73, 593 (1976)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    B.D. Hughes, B.A. Pailthorpe, L.R. White, J. Fluid Mech. 110, 349 (1981)MathSciNetADSzbMATHCrossRefGoogle Scholar
  14. 14.
    E. Evans, E. Sackmann, J. Fluid Mech. 194, 553 (1988)ADSzbMATHCrossRefGoogle Scholar
  15. 15.
    Y. Tserkovnyak, D.R. Nelson, Proc. Natl. Acad. Sci. U.S.A. 103, 15002 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    A.J. Levine, T.B. Liverpool, F.C. MacKintosh, Phys. Rev. Lett. 93, 038102 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    A.J. Levine, T.B. Liverpool, F.C. MacKintosh, Phys. Rev. E 69, 021503 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    Th.M. Fischer, J. Fluid Mech. 498, 123 (2004)MathSciNetADSzbMATHCrossRefGoogle Scholar
  19. 19.
    Y. Yang, R. Prudhomme, K.M. McGrath, P. Richetti, C.M. Marques, Phys. Rev. Lett. 12, 2729 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    M. Muthukumar, J. Chem. Phys. 82, 5696 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    S. Komura, K. Seki, J. Phys. II 5, 5 (1995)CrossRefGoogle Scholar
  22. 22.
    S. Ramaswamy, G.F. Mazenko, Phys. Rev. A 26, 1735 (1982)ADSCrossRefGoogle Scholar
  23. 23.
    Y.Y. Suzuki, T. Izuyama, J. Phys. Soc. Jpn. 58, 1104 (1989)ADSCrossRefGoogle Scholar
  24. 24.
    K. Seki, S. Komura, Phys. Rev. E 47, 2377 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    K. Seki, S. Komura, M. Imai, J. Phys.: Condens. Matter 19, 072101 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    B. Maier, J.O. Rädler, Phys. Rev. Lett. 82, 1911 (1999)ADSCrossRefGoogle Scholar
  27. 27.
    B. Maier, J.O. Rädler, Macromolecules 33, 7185 (2000)ADSCrossRefGoogle Scholar
  28. 28.
    B. Maier, J.O. Rädler, Macromolecules 34, 5723 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    C. Herold, P. Schwille, E.P. Petrov, Phys. Rev. Lett. 104, 148102 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    M. Daoud, P.G. de Gennes, J. Phys. 38, 85 (1977)CrossRefGoogle Scholar
  31. 31.
    F. Brochard, J. Phys. 38, 1285 (1977)CrossRefGoogle Scholar
  32. 32.
    P.G. de Gennes, F. Brochard, J. Chem. Phys. 67, 52 (1977)ADSCrossRefGoogle Scholar
  33. 33.
    T. Tlusty, Macromolecules 39, 3927 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    P.K. Lin, C.C. Fu, Y.R. Chen, P.K. Wei, C.H. Kuan, W.S. Fann, Phys. Rev. E 76, 011806 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    K. Inaura, Y. Fujitani, J. Phys. Soc. Jpn. 77, 114603 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    M. Kraus, U. Seifert, J. Phys. II 4, 1117 (1994)CrossRefGoogle Scholar
  37. 37.
    N. Gov, A.G. Zilman, S. Safran, Phys. Rev. E 70, 011104 (2004)MathSciNetADSCrossRefGoogle Scholar
  38. 38.
    S. Sankararaman, G.I. Menon, P.B.S. Kumar, Phys. Rev. E 66, 031914 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    D.K. Lubensky, R.E. Goldstein, Phys. Fluids 8, 843 (1996)ADSzbMATHCrossRefGoogle Scholar
  40. 40.
    N. Oppenheimer, H. Diamant, Biophys. J. 96, 3041 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    N. Oppenheimer, H. Diamant, Phys. Rev. E 82, 041912 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    H. Stone, A. Ajdari, J. Fluid Mech. 369, 151 (1998)ADSzbMATHGoogle Scholar
  43. 43.
    S. Ramachandran, S. Komura, M. Imai, K. Seki, Eur. Phys. J. E 31, 303 (2010)CrossRefGoogle Scholar
  44. 44.
    D.L. Ermak, J.A. McCammon, J. Chem. Phys. 69, 1352 (1978)ADSCrossRefGoogle Scholar
  45. 45.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, Oxford, 1986)Google Scholar
  46. 46.
    B.H. Zimm, J. Chem. Phys. 24, 269 (1956)MathSciNetADSCrossRefGoogle Scholar
  47. 47.
    W. Feller, An Introduction to Probability Theory and its Applications (Wiley, New York, 1968)Google Scholar
  48. 48.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1972)Google Scholar
  49. 49.
    S. Ramachandran, S. Komura, G. Gompper, EPL 89, 56001 (2010)ADSCrossRefGoogle Scholar
  50. 50.
    H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009)ADSCrossRefGoogle Scholar
  51. 51.
    M. Rubinstein, R.H. Colby, Polymer Physics (University Press, Oxford, 2004)Google Scholar
  52. 52.
    R.M. Johnson, J.L. Schrag, J.D. Ferry, Polymer J. 1, 742 (1970)CrossRefGoogle Scholar
  53. 53.
    W.H. Stockmayer, B. Hammouda, Pure Appl. Chem. 56, 1373 (1984)CrossRefGoogle Scholar
  54. 54.
    Y. Kaizuka, J.T. Groves, Biophys. J. 86, 905 (2004)ADSCrossRefGoogle Scholar
  55. 55.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, London, 1994)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • S. Ramachandran
    • 1
  • S. Komura
    • 1
    Email author
  • K. Seki
    • 2
  • G. Gompper
    • 3
  1. 1.Department of Chemistry, Graduate School of Science and EngineeringTokyo Metropolitan UniversityTokyoJapan
  2. 2.National Institute of Advanced Industrial Science and TechnologyIbarakiJapan
  3. 3.Institut für FestkörperforschungForschungszentrum JülichJülichGermany

Personalised recommendations