Advertisement

Dynamics of superparamagnetic filaments with finite magnetic relaxation time

  • A. Cēbers
  • H. Kalis
Regular Article

Abstract.

In this paper we formulate a model of superparamagnetic filaments with internal dissipative torques due to the action of a rotating magnetic field. It is shown that spirals are formed at both ends of the filament due to the action of the internal torques. These spirals propagate to the center of the filament and collide, forming a compact cluster that rotates in accordance with the rotating magnetic field. These results are in agreement with recent experiments with chains of superparamagnetic beads in a rotating magnetic field.

Keywords

Torque Repulsive Force Marker Point Elastic Force Constant Angular Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.I. Shliomis, Sov. Phys. Usp. (Engl. transl.) 17, 153 (1974)CrossRefADSGoogle Scholar
  2. 2.
    A. Cēbers, E. Lemaire, L. Lobry, Magnetohydrodynamics 36, 347 (2000)Google Scholar
  3. 3.
    J.-C. Tsai, F. Ye, J. Rodriguez, J.P. Gollub, T.C. Lubensky, Phys. Rev. Lett. 94, 214301 (2005)CrossRefADSGoogle Scholar
  4. 4.
    J.P. McTague, J. Chem. Phys. 51, 133 (1969)CrossRefADSGoogle Scholar
  5. 5.
    A. Cēbers, Magnetohydrodynamics 16, 175 (1980)Google Scholar
  6. 6.
    A. Cēbers, E. Lemaire, L. Lobry, Int. J. Mod. Phys. B 16, 2603 (2002)CrossRefADSGoogle Scholar
  7. 7.
    A. Cēbers, Magnetohydrodynamics 11, 79 (1975)Google Scholar
  8. 8.
    R.E. Rosensweig, J. Popplewell, R.J. Johnston, J. Magn. & Magn. Mater. 85, 171 (1990)CrossRefADSGoogle Scholar
  9. 9.
    M. Martsenyuk, Yu.L. Raikher, M.I. Shliomis, Sov. Phys. JETP 38, 413 (1974)ADSGoogle Scholar
  10. 10.
    N. Pamme, Lab on Chip 6, 24 (2006)CrossRefGoogle Scholar
  11. 11.
    Q.A. Pankhurst, J. Connoly, S.K. Jones, J. Dobson, J. Phys. D: Appl. Phys. 36, R167 (2003)CrossRefADSGoogle Scholar
  12. 12.
    A. Hecht, P. Kinnunen, B. McNaughton, R. Kopelman, J. Magn. & Magn. Mater. 323, 272 (2011)CrossRefADSGoogle Scholar
  13. 13.
    P.C. Fannin, L. Cohen-Tannoudji, E. Bertrand, A.T. Giannitsis, C. MacOireachtaigh, J. Bibette, J. Magn. & Magn. Mater. 303, 147 (2006)CrossRefADSGoogle Scholar
  14. 14.
    N. Casic, S. Schreiber, P. Tierno, W. Zimmermann, T.M. Fisher, EPL 90, 58001 (2010)CrossRefADSGoogle Scholar
  15. 15.
    A. Cēbers, J. Phys.: Condens. Matter 15, S1335 (2003)CrossRefGoogle Scholar
  16. 16.
    M. Belovs, A. Cēbers, Phys. Rev. E 73, 051503 (2006)CrossRefADSGoogle Scholar
  17. 17.
    R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, 1985)Google Scholar
  18. 18.
    E. Blums, A. Cebers, M.M. Maiorov, Magnetic Fluids (W. de Gruyter, 1997)Google Scholar
  19. 19.
    E.J. Hinch, J. Fluid Mech. 271, 219 (1994)CrossRefzbMATHADSMathSciNetGoogle Scholar
  20. 20.
    S. Ramanthan, D.C. Morse, J. Chem. Phys. 126, 094906 (2007)CrossRefADSGoogle Scholar
  21. 21.
    G. Bossis, A. Cēbers, J. Magn. & Magn. Mater. 201, 218 (1999)CrossRefADSGoogle Scholar
  22. 22.
    A. Cēbers, Curr. Opin. Colloid Interface Sci. 10, 167 (2005)CrossRefGoogle Scholar
  23. 23.
    A. Cēbers, I. Javaitis, Phys. Rev. E 69, 021404 (2004)CrossRefADSGoogle Scholar
  24. 24.
    R.E. Goldstein, D.M. Petrich, Phys. Rev. Lett. 67, 3203 (1991)CrossRefzbMATHADSMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • A. Cēbers
    • 1
  • H. Kalis
    • 1
  1. 1.University of LatviaRīgaLatvia

Personalised recommendations