Advertisement

Theoretical and experimental study of the nanoparticle-driven blue phase stabilisation

  • B. Rožič
  • V. Tzitzios
  • E. Karatairi
  • U. Tkalec
  • G. Nounesis
  • Z. Kutnjak
  • G. Cordoyiannis
  • R. Rosso
  • E. G. Virga
  • I. Muševič
  • S. Kralj
Regular Article

Abstract.

We have studied theoretically and experimentally the effects of various types of nanoparticles (NPs) on the temperature stability range \( \Delta\) T BP of liquid-crystalline (LC) blue phases. Using a mesoscopic Landau-de Gennes type approach we obtain that the defect core replacement (DCR) mechanism yields in the diluted regime \( \Delta\) T BP(x) \( \propto\) 1/(1 - xb) , where x stands for the concentration of NPs and b is a constant. Our calculations suggest that the DCR mechanism is efficient if a local NP environment resembles the core structure of disclinations, which represent the characteristic property of BP structures. These predictions are in line with high-resolution ac calorimetry and optical polarising microscopy experiments using the CE8 LC and CdSe or aerosil NPs. In mixtures with CdSe NPs of 3.5nm diameter and hydrophobic coating the BPIII stability range has been extended up to 20K. On the contrary, the effect of aerosil silica nanoparticles of 7.0nm diameter and hydrophilic coating is very weak.

Keywords

Aerosil Oleyl Amine CdSe Nanoparticles Cholesteric Phase Disclination Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Coats, P. Pieranski, Phys. Lett. A 45, 115 (1973)CrossRefADSGoogle Scholar
  2. 2.
    P.J. Collings, J.R. McColl, J. Chem. Phys. 69, 3371 (1978)CrossRefADSGoogle Scholar
  3. 3.
    T. Blümel, P.J. Collings, H. Onusseit, H. Stegemeyer, Chem. Phys. Lett. 116, 30 (1985)CrossRefGoogle Scholar
  4. 4.
    P.H. Keyes, MRS Bull. 16, 32 (1991)Google Scholar
  5. 5.
    A. Leforestier, F. Livolant, Liq. Cryst. 17, 651 (1994)CrossRefGoogle Scholar
  6. 6.
    J. Charvolin, J.F. Sadoc, Eur. Phys. J. E 25, 335 (2008)CrossRefGoogle Scholar
  7. 7.
    P.P. Crooker, Mol. Cryst. Liq. Cryst. 98, 31 (1983)CrossRefGoogle Scholar
  8. 8.
    R. Collings, Phys. Rev. A 30, 30 (1984)CrossRefGoogle Scholar
  9. 9.
    R. Barbet-Massin, P.E. Cladis, P. Pieranski, Phys. Rev. A 30, 1161 (1984)CrossRefADSGoogle Scholar
  10. 10.
    E. Dubois-Violette, B. Pansu, P. Pieranski, Mol. Cryst. Liq. Cryst. 192, 221 (1990)CrossRefGoogle Scholar
  11. 11.
    E.P. Koistinen, P.H. Keyes, Phys. Rev. Lett. 74, 4460 (1995)CrossRefADSGoogle Scholar
  12. 12.
    W. Cao, A. Munoz, P. Palffy-Muhoray, B. Taheri, Nature Mater. 1, 111 (2002)CrossRefADSGoogle Scholar
  13. 13.
    Y. Hisakado, H. Kikuchi, T. Nagamura, T. Kajiyama, Adv. Mater. 17, 96 (2005)CrossRefGoogle Scholar
  14. 14.
    S.M. Morris, A.D. Ford, C. Gillspie, M.N. Pivnenko, O. Hadeler, H.J. Coles, J. Soc. Inf. Disp. 14, 565 (2006)CrossRefGoogle Scholar
  15. 15.
    H. Iwamochi, A. Yoshizawa, Appl. Phys. Express 1, 111801 (2008)CrossRefADSGoogle Scholar
  16. 16.
    H.Y. Liu, C.T. Wang, C.Y. Hsu, T.H. Lin, J.H. Liu, Appl. Phys. Lett. 96, 121103 (2010)CrossRefADSGoogle Scholar
  17. 17.
    H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, T. Kajiyama, Nature Mater. 1, 64 (2002)CrossRefADSGoogle Scholar
  18. 18.
    M. Nakata, Y. Takanishi, J. Watanabe, H. Takezoe, Phys. Rev. E 68, 041710 (2003)CrossRefADSGoogle Scholar
  19. 19.
    H.J. Coles, M.N. Pivnenko, Nature 436, 997 (2005)CrossRefADSGoogle Scholar
  20. 20.
    G.P. Alexander, J.M. Yeomans, Phys. Rev. E 74, 74 (2006)CrossRefGoogle Scholar
  21. 21.
    A. Yoshizawa, H. Iwamochi, S. Segawa, M. Sato, Liq. Cryst. 34, 1039 (2007)CrossRefGoogle Scholar
  22. 22.
    T. Noma, M. Ojima, H. Asagi, Y. Kawahira, A. Fujii, M. Ozaki, J. Surf. Sci. Nanotech. 6, 17 (2008)CrossRefGoogle Scholar
  23. 23.
    H. Yoshida, Y. Tanaka, K. Kawamoto, H. Kubo, T. Tsuda, A. Fujii, S. Kuwabata, H. Kikuchi, M. Ozaki, Appl. Phys. Express 2, 121501 (2009)CrossRefADSGoogle Scholar
  24. 24.
    E. Karatairi, B. Rožič, Z. Kutnjak, V. Tzitzios, G. Nounesis, G. Cordoyiannis, C. Glorieux, J. Thoen, S. Kralj, Phys. Rev. E 81, 041703 (2010)CrossRefADSGoogle Scholar
  25. 25.
    M. Ravnik, G.P. Alexander, J.M. Yeomans, S. Zumer, Faraday Discuss. 144, 159 (2010)CrossRefADSGoogle Scholar
  26. 26.
    J. Fukuda, S. Zumer, Phys. Rev. Lett. 104, 017801 (2010)CrossRefADSGoogle Scholar
  27. 27.
    H. Iwamochi, T. Hirose, Y. Kogawa, A. Yoshizawa, Chem. Lett. 39, 170 (2010)CrossRefGoogle Scholar
  28. 28.
    F. Castles, S.M. Morris, E.M. Terentjev, H.J. Coles, Faraday Discuss. 104, 157801 (2010)Google Scholar
  29. 29.
    S. Taushanoff, K. Van Le, J. Williams, R.J. Twieg, B.K. Sasashiva, H. Takezoe, A. Jakli, J. Mater. Chem. 20, 5893 (2010)CrossRefGoogle Scholar
  30. 30.
    K.-M. Chen, S. Gauza, H. Xianyu, T.-T. Wu, J. Display Technol. 6, 49 (2010)CrossRefADSGoogle Scholar
  31. 31.
    G. Cordoyiannis, P. Losada-Pérez, C.S.P. Tripathi, B. Rožič, U. Tkalec, V. Tzitzios, E. Karatairi, G. Nounesis, Z. Kutnjak, I. Muševič, C. Glorieux, S. Kralj, J. Thoen, Liq. Cryst. 37, 1419 (2010)CrossRefGoogle Scholar
  32. 32.
    H.S. Kitzerow, H. Schmid, A. Ranft, A. Heppke, R.A.M. Hikmet, J. Lub, Liq. Cryst. 14, 911 (1993)CrossRefGoogle Scholar
  33. 33.
    V. Tzitzios, V. Georgakilas, I. Zafiropoulou, N. Boukos, G. Basina, D. Niarchos, D. Petridis, J. Nanosci. Nanotechnol. 8, 3117 (2008)CrossRefGoogle Scholar
  34. 34.
    G.S. Iannacchione, C.W. Garland, J.T. Mang, T.P. Rieker, Phys. Rev. E 58, 5966 (1998)CrossRefADSGoogle Scholar
  35. 35.
    J. Barre, A.R. Bishop, T. Lookman, A. Saxena, Phys. Rev. Lett. 94, 208701 (2005)CrossRefADSGoogle Scholar
  36. 36.
    H. Haga, C.W. Garland, Phys. Rev. E 56, 3044 (1997)CrossRefADSGoogle Scholar
  37. 37.
    H. Yao, K. Ema, C.W. Garland, Rev. Sci. Instrum. 69, 172 (1998)CrossRefADSGoogle Scholar
  38. 38.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals (Oxford University Press, Oxford, 1993)Google Scholar
  39. 39.
    P. Kaiser, W. Wiese, S. Hess, J. Non-Equilib. Thermodyn. 17, 153 (1992)zbMATHCrossRefADSGoogle Scholar
  40. 40.
    P. Poulin, V.A. Raghunathan, P. Richetti, D. Doux, J. Phys. II 4, 1557 (1994)CrossRefGoogle Scholar
  41. 41.
    E.G. Virga, Variational Theories for Liquid Crystals (Chapman Hall, London, 1994)Google Scholar
  42. 42.
    A. Matsuyama, R.L.M. Evans, M.E. Cates, Phys. Rev. E 61, 2977 (2000)CrossRefADSGoogle Scholar
  43. 43.
    P.J. Flory, Proc. R. Soc. London, Ser. A 243, 73 (1956)ADSGoogle Scholar
  44. 44.
    M. Nobili, G. Durand, Phys. Rev. A 46, R6174 (1992)CrossRefADSGoogle Scholar
  45. 45.
    V.J. Anderson, E.M. Terentjev, P. Petrov, S.P. Meeker, J. Crain, W.C.K. Poon, Eur. Phys. J. E 4, 11 (2001)CrossRefGoogle Scholar
  46. 46.
    V. Popa-Nita, P. van der Schoot, S. Kralj, Eur. Phys. J. E 21, 189 (2006)CrossRefGoogle Scholar
  47. 47.
    S. Kralj, Z. Bradač, V. Popa-Nita, J. Phys.: Condens. Matter 20, 244112 (2008)CrossRefADSGoogle Scholar
  48. 48.
    S. Kralj, R. Rosso, E.G. Virga, Phys. Rev. E 78, 031701 (2008)CrossRefADSGoogle Scholar
  49. 49.
    S. Kralj, R. Rosso, E.G. Virga, Phys. Rev. E 81, 021702 (2010)CrossRefADSGoogle Scholar
  50. 50.
    S. Kralj, E.G. Virga, S. Zumer, Phys. Rev. E 60, 1858 (1999)CrossRefADSGoogle Scholar
  51. 51.
    S. Kralj, S. Zumer, Phys. Rev. A 45, 2461 (1992)CrossRefADSGoogle Scholar
  52. 52.
    F. Bisi, E.C. Gartland, R. Rosso, E.G. Virga, Phys. Rev. E 68, 021707 (2003)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • B. Rožič
    • 1
  • V. Tzitzios
    • 2
  • E. Karatairi
    • 3
    • 4
  • U. Tkalec
    • 1
    • 5
  • G. Nounesis
    • 3
  • Z. Kutnjak
    • 1
  • G. Cordoyiannis
    • 1
    • 6
  • R. Rosso
    • 7
  • E. G. Virga
    • 7
  • I. Muševič
    • 1
  • S. Kralj
    • 1
    • 8
  1. 1.Condensed Matter Physics DepartmentJožef Stefan InstituteLjubljanaSlovenia
  2. 2.Institute of Materials ScienceNational Centre for Scientific Research “Demokritos,”Aghia ParaskeviGreece
  3. 3.Institute of Radioisotopes and Radiodiagnostic ProductsNational Centre for Scientific Research “Demokritos,”Aghia ParaskeviGreece
  4. 4.Department of Materials ScienceUniversity of PatrasPatrasGreece
  5. 5.NAMASTE Centre of ExcellenceLjubljanaSlovenia
  6. 6.EN FIST Centre of ExcellenceLjubljanaSlovenia
  7. 7.Dipartimento di Matematica and SMMMUniversità di PaviaPaviaItaly
  8. 8.Department of PhysicsUniversity of MariborMariborSlovenia

Personalised recommendations