Elastic response and wrinkling onset of curved elastic membranes subjected to indentation test

  • R. Bernal
  • Ch. Tassius
  • F. Melo
  • J. -Ch. Géminard
Regular Article


Starting from a polymeric-fluid droplet, by vulcanization of the fluid free surface, curved elastic membranes, several nanometers thick and a few millimeters in diameter, which enclose a constant fluid volume, are produced. In an indentation-type test, carried out by pushing the membrane along its normal by means of a micro-needle, under some conditions, wrinkles are likely to appear around the contact region. Interestingly, we observe that the instability does not significantly alter the force-displacement relation: the relation between the force and the displacement remains linear and the associated stiffness is simply proportional to the tension of the membrane. In addition, we determine that the wrinkles develop when the stretching modulus of the membrane compares with its tension, which provides a useful method to estimate the elastic constant.


PDMS Indentation Test Vulcanization Initial Tension Membrane Tension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A.K. Harris, P. Wild, D. Stopak, Science 28, 177 (1980)CrossRefADSGoogle Scholar
  2. 2.
    E. Cerda, J. Biomech. 38, 1598 (2005)CrossRefGoogle Scholar
  3. 3.
    K. Burton, D.L. Taylor, Nature 393, 150 (1998)Google Scholar
  4. 4.
    K.D. Hobart, J. Electron. Mater. 30, 797 (2001)CrossRefADSGoogle Scholar
  5. 5.
    P.A. O’Connell, G.B. McKenna, Eur. Phys. J. E 20, 143 (2006)CrossRefGoogle Scholar
  6. 6.
    E.P. Chan, A.J. Crosby, Adv. Mater. 18, 3238 (2006)CrossRefGoogle Scholar
  7. 7.
    V.D. Gordon, X. Chen, J.W. Hutchinson, A.R. Bausch, M.Marquez, D.A. Weitz, J. Am. Chem. Soc. 126, 14121 (2004)CrossRefGoogle Scholar
  8. 8.
    S.J. Pastine, D.Okawa, A. Zettl, J. M.J. Fréchet, J. Am. Chem. Soc. 131, 13586 (2009)CrossRefGoogle Scholar
  9. 9.
    M.W. Keller, N.R. Sottos, Exp. Mech. 46, 725 (2006)CrossRefGoogle Scholar
  10. 10.
    E. Cerda, K. Ravi-Chandar, L. Mahadevan, Nature 419, 579 (2002)CrossRefADSGoogle Scholar
  11. 11.
    E. Cerda, L. Mahadevan, Phys. Rev. Lett. 90, 1 (2003)CrossRefGoogle Scholar
  12. 12.
    J.-Ch. Géminard, R. Bernal, F. Melo, Eur. Phys. J. E 15, 117 (2004)CrossRefGoogle Scholar
  13. 13.
    J. Huang, M. Juszkiewicz, W.H. de Jeu, E. Cerda, T. Emrick, N. Menon, T.P. Russell, Science 317, 650 (2007)CrossRefADSGoogle Scholar
  14. 14.
    C.M. Stafford, C. Harrison, K.L. Beers, A. Karim, E.J. Amis, M.R. VanLandingham, H.-C. Kim, W. Volksen, R.D. Miller, E.E. Simonyi, Nat. Mater. 3, 545 (2004)CrossRefADSGoogle Scholar
  15. 15.
    R. Bernal, Ch. Tassius, J.-Ch. Géminard, F. Melo, Appl. Phys. Lett. 90, 063903 (2007)CrossRefADSGoogle Scholar
  16. 16.
    M. Li, S. Xu, E. Kumacheva, Macromolecules 33, 4972 (2000)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. Bernal
    • 1
  • Ch. Tassius
    • 1
  • F. Melo
    • 1
  • J. -Ch. Géminard
    • 2
  1. 1.Departamento de FísicaUniversidad de Santiago de ChileSantiagoChile
  2. 2.Université de LyonCNRSLyon cedex 07France

Personalised recommendations