Surface nucleation in the crystallisation of polyethylene droplets

Regular Article

Abstract.

The division of semi-crystalline polymeric material into small domains is an effective tool for studying crystal nucleation. The scaling behavior of the nucleation rate as a function of domain size can reveal important information about the mechanism responsible for the birth of a crystal nucleus. We have investigated the process of crystal nucleation in a system of dewetted polyethylene droplets. Through the use of a correlation sample analysis, we are able to differentiate between heterogeneous and homogeneous nucleation mechanisms in a droplet sample. An analysis of the dependence of the nucleation rate on droplet size reveals that the nucleation probability scales with the surface area of the droplet.

References

  1. 1.
    B. Vonnegut, J. Colloid Sci. 3, 563 (1948)CrossRefGoogle Scholar
  2. 2.
    D. Turnbull, J. Chem. Phys. 20, 411 (1952)ADSCrossRefGoogle Scholar
  3. 3.
    R. Cormia, F. Price, D. Turnbull, J. Chem. Phys. 37, 1333 (1962)ADSCrossRefGoogle Scholar
  4. 4.
    J. Koutsky, A. Walton, E. Baer, J. Appl. Phys. 38, 1832 (1967)ADSCrossRefGoogle Scholar
  5. 5.
    H. Frensch, P. Harnischfeger, B. Jungnickel, Interface 4, 20 (1989)Google Scholar
  6. 6.
    M. Arnal, M. Matos, R. Morales, O. Santana, A. Müller, Macromol. Chem. Phys. 199, 2275 (1998)CrossRefGoogle Scholar
  7. 7.
    R. Tol, V. Mathot, G. Groeninckx, Polymer 46, 383 (2005)CrossRefGoogle Scholar
  8. 8.
    P. Barham, D. Jarvis, A. Keller, J. Polym. Sci. Polym. Phys. Ed. 20, 1733 (1982)ADSCrossRefGoogle Scholar
  9. 9.
    Y.L. Loo, R.A. Register, A.J. Ryan, Phys. Rev. Lett. 84, 4120 (2000)ADSCrossRefGoogle Scholar
  10. 10.
    G. Reiter, G. Castelein, J.U. Sommer, A. Röttele, T. Thurn-Albrecht, Phys. Rev. Lett. 87, 226101 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    A. Lorenzo, M. Arnal, A. Müller, A. Boschetti de Fierro, V. Abetz, Eur. Polym. J. 42, 516 (2006)CrossRefGoogle Scholar
  12. 12.
    J. Carvalho, M. Massa, K. Dalnoki-Veress, J. Polym. Sci., Part B: Polym. Phys. 44, 3448 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    S. Nojima, Y. Ohguma, S. Namiki, T. Ishizone, K. Yamaguchi, Macromolecules 41, 1915 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    T. Cai, Y. Qian, Y. Ma, Y. Ren, W. Hu, Macromolecules 42, 3381 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    E. Woo, J. Huh, Y. Jeong, K. Shin, Phys. Rev. Lett. 98, 136103 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    M. Massa, J. Carvalho, K. Dalnoki-Veress, Eur. Phys. J. E 12, 111 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Massa, K. Dalnoki-Veress, Phys. Rev. Lett. 92, 255509 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    M. Massa, M. Lee, K. Dalnoki-Veress, J. Polym. Sci., Part B: Polym. Phys. 43, 3438 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    M. Massa, J. Carvalho, K. Dalnoki-Veress, Phys. Rev. Lett. 97, 247802 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    W. Hu, T. Cai, Y. Ma, J. Hobbs, O. Farrance, G. Reiter, Faraday Discuss. 143, 129 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    J. Carvalho, K. Dalnoki-Veress, Phys. Rev. Lett. 105, 237801 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    Z. Wang, B. Hsiao, E. Sirota, S. Srinivas, Polymer 41, 8825 (2000)CrossRefGoogle Scholar
  23. 23.
    A. Müller, V. Balsamo, M. Arnal, Block Copolymers II, Springer Adv. Polym. Sci., Vol. 190 (Springer, 2005) pp. 1--63Google Scholar
  24. 24.
    H. Chen, S. Hsiao, T. Lin, K. Yamauchi, H. Hasegawa, T. Hashimotos, Macromolecules 34, 671 (2001)ADSMATHCrossRefGoogle Scholar
  25. 25.
    A. Röttele, T. Thurn-Albrecht, J. Sommer, G. Reiter, Macromolecules 36, 1257 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations