Advertisement

The European Physical Journal E

, Volume 33, Issue 2, pp 117–127 | Cite as

Mechanics and remodelling of cell packings in epithelia

  • D. B. Staple
  • R. Farhadifar
  • J. -C. Röper
  • B. Aigouy
  • S. Eaton
  • F. Jülicher
Regular Article

Abstract.

Epithelia are sheets of cells that are dynamically remodelled by cell division and cell death during development. Here we describe the cell shapes and packings as networks of polygons: stable and stationary network configurations obey force balance and are represented as local minima of a potential function. We characterize the physical properties of this vertex model, including the set of ground states, and the energetics of topological rearrangements. We furthermore discuss a quasistatic description of cell division that allows us to study the mechanics and dynamics of tissue remodelling during growth. The biophysics of cells and their rearrangements can account for the morphology of cell packings observed in experiments.

Keywords

Hexagonal Lattice Line Tension Regular Hexagon Vertex Model Junctional Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.C. Gibson, A.B. Patel, R. Nagpal, N. Perrimon, Nature 442, 1038 (2006)CrossRefADSGoogle Scholar
  2. 2.
    R. Nagpal, A. Patel, M.C. Gibson, BioEssays 30, 260 (2008)CrossRefGoogle Scholar
  3. 3.
    R. Farhadifar, J.C. Röper, B. Aigouy, S. Eaton, F. Jülicher, Curr. Biol. 17, 2095 (2007)CrossRefGoogle Scholar
  4. 4.
    T. Nagai, K. Kawasaki, K. Nakamura, J. Phys. Soc. Jpn. 57, 2221 (1988)CrossRefMathSciNetADSGoogle Scholar
  5. 5.
    M. Weliky, G. Oster, Development 109, 373 (1990)Google Scholar
  6. 6.
    T. Nagai, H. Honda, Philos. Mag. B 81, 699 (2001)ADSGoogle Scholar
  7. 7.
    T. Nagai, H. Honda, Phys. Rev. E 80, 061903 (2009)CrossRefADSGoogle Scholar
  8. 8.
    K.P. Landsberg, R. Farhadifar, J. Ranft, D. Umetsu, T.J. Widmann, T. Bittig, A. Said, F. Jülicher, C. Dahmann, Curr. Biol. 19, 1950 (2009)CrossRefGoogle Scholar
  9. 9.
    T. Aegerter-Wilmsen, A.C. Smith, A.J. Christen, C.M. Aegerter, E. Hafen, K. Basler, Development 137, 499 (2010)CrossRefGoogle Scholar
  10. 10.
    B. Aigouy, R. Farhadifar, D.B. Staple, A. Sagner, J.C. Röper, F. Jülicher, S. Eaton, Cell 142, 773 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Plateau, Statique expérimentale et théorique des Liquides soumis aux seules Forces moléculaires (Paris, Gauthier-VillarsGoogle Scholar
  12. 12.
    J.E. Taylor, Ann. Math. 103, 489 (1976)CrossRefGoogle Scholar
  13. 13.
    K. Kawasaki, T. Nagai, K. Nakashima, Philos. Mag. B 60, 399 (1989)CrossRefGoogle Scholar
  14. 14.
    K. Nakashima, T. Nagai, K. Kawasaki, J. Stat. Phys. 57, 759 (1989)CrossRefADSGoogle Scholar
  15. 15.
    T. Okuzono, K. Kawasaki, Phys. Rev. E 51, 1246 (1995)CrossRefADSGoogle Scholar
  16. 16.
    R.L. Fullman, in Metal Interfaces (American Society for Metals, Cleveland, 1952) pp. 179--207.Google Scholar
  17. 17.
    A. Soares, A.C. Ferro, M.A. Fortes, Scr. Met. 19, 1491 (1985)CrossRefGoogle Scholar
  18. 18.
    D. Weaire, The Physics of Foams (Oxford University Press, 2000) ISBN 0198505515Google Scholar
  19. 19.
    F. Graner, J.A. Glazier, Phys. Rev. Lett. 69, 2013 (1992)CrossRefADSGoogle Scholar
  20. 20.
    J.C.M. Mombach, R.M.C. de Almeida, J.R. Iglesias, Phys. Rev. E 48, 598 (1993)CrossRefADSGoogle Scholar
  21. 21.
    R. Smallwood, Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 191 (2009)CrossRefGoogle Scholar
  22. 22.
    P. Pathmanathan, J. Cooper, A. Fletcher, G. Mirams, P. Murray, J. Osborne, J. Pitt-Francis, A. Walter, S.J. Chapman, Phys. Biol. 6, 036001 (2009)CrossRefADSGoogle Scholar
  23. 23.
    Y. Hatwalne, S. Ramaswamy, M. Rao, R.A. Simha, Phys. Rev. Lett. 92, 118101 (2004)CrossRefADSGoogle Scholar
  24. 24.
    K. Kruse, J.F. Joanny, F. Jülicher, J. Prost, K. Sekimoto, Eur. Phys. J. E 16, 5 (2005)CrossRefGoogle Scholar
  25. 25.
    T. Bittig, O. Wartlick, A. Kicheva, M. González-Gáitan, F. Jülicher, New J. Phys. 10, 063001 (2008)CrossRefADSGoogle Scholar
  26. 26.
    M.S. Hutson, J. Veldhuis, X. Ma, H.E. Lynch, P.G. Cranston, G.W. Brodland, Biophys. J. 97, 3075 (2009)CrossRefADSGoogle Scholar
  27. 27.
    S. Hilgenfeldt, S. Erisken, R.W. Carthew, Proc. Natl. Acad. Sci. U.S.A. 105, 907 (2008)CrossRefADSGoogle Scholar
  28. 28.
    D. Weaire, N. Rivier, Contemp. Phys. 25, 59 (1984)CrossRefADSGoogle Scholar
  29. 29.
    E. Polak, G. Ribière, Rev. Fr. Inform. Rech. Oper. 3, 35 (1969)zbMATHGoogle Scholar
  30. 30.
    B. Gough, GNU Scientific Library Reference Manual, 3rd edition (Network Theory Limited, 2009) ISBN 0954612078Google Scholar
  31. 31.
    F.T. Lewis, Anat. Rec. 38, 341 (1928)CrossRefGoogle Scholar
  32. 32.
    F.T. Lewis, Am. J. Botany 30, 766 (1943)CrossRefGoogle Scholar
  33. 33.
    T.C. Hales, Discrete Comput. Geom. 25, 1 (2001)zbMATHMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • D. B. Staple
    • 1
  • R. Farhadifar
    • 1
  • J. -C. Röper
    • 2
  • B. Aigouy
    • 2
  • S. Eaton
    • 2
  • F. Jülicher
    • 1
  1. 1.Max Planck Institute for the Physics of Complex SystemsDresdenGermany
  2. 2.Max Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany

Personalised recommendations