The European Physical Journal E

, Volume 33, Issue 3, pp 219–242 | Cite as

Free energy of colloidal particles at the surface of sessile drops

  • J. GuzowskiEmail author
  • M. Tasinkevych
  • S. Dietrich
Regular Article


The influence of finite system size on the free energy of a spherical particle floating at the surface of a sessile droplet is studied both analytically and numerically. In the special case that the contact angle at the substrate equals \( \pi\)/2 , a capillary analogue of the method of images is applied in order to calculate small deformations of the droplet shape if an external force is applied to the particle. The type of boundary conditions for the droplet shape at the substrate determines the sign of the capillary monopole associated with the image particle. Therefore, the free energy of the particle, which is proportional to the interaction energy of the original particle with its image, can be of either sign, too. The analytic solutions, given by the Green's function of the capillary equation, are constructed such that the condition of the forces acting on the droplet being balanced and of the volume constraint are fulfilled. Besides the known phenomena of attraction of a particle to a free contact line and repulsion from a pinned one, we observe a local free-energy minimum for the particle being located at the drop apex or at an intermediate angle, respectively. This peculiarity can be traced back to a non-monotonic behavior of the Green's function, which reflects the interplay between the deformations of the droplet shape and the volume constraint.


Free Energy Contact Angle Colloidal Particle Contact Line Volume Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Pieranski, Phys. Rev. Lett. 45, 569 (1980)CrossRefADSGoogle Scholar
  2. 2.
    J.M. Kosterlitz, D.J. Thouless, J. Phys. C: Solid State Phys. 6, 1181 (1973)CrossRefADSGoogle Scholar
  3. 3.
    K. Zahn, G. Maret, Phys. Rev. Lett. 85, 3656 (2000)CrossRefADSGoogle Scholar
  4. 4.
    R. Bubeck, C. Bechinger, S. Neser, P. Leiderer, Phys. Rev. Lett. 82, 3364 (1999)CrossRefADSGoogle Scholar
  5. 5.
    N. Bowden, A. Terfort, J. Carbeck, G.M. Whitesides, Science 276, 233 (1997)CrossRefGoogle Scholar
  6. 6.
    L.E. Helseth, R.M. Muruganathan, Y. Zhang, T.M. Fischer, Langmuir 21, 7271 (2005)CrossRefGoogle Scholar
  7. 7.
    J. Aizenberg, P.V. Braun, P. Wiltzius, Phys. Rev. Lett. 84, 2997 (2000)CrossRefADSGoogle Scholar
  8. 8.
    J.C. Loudet, B. Pouligny, EPL 85, 28003 (2009)CrossRefADSGoogle Scholar
  9. 9.
    S.U. Pickering, J. Chem. Soc. 91, 2001 (1907)Google Scholar
  10. 10.
    A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch, D.A. Weitz, Science 298, 1006 (2002)CrossRefADSGoogle Scholar
  11. 11.
    M. Chavez-Paez, P. Gonzalez-Mozuelos, M. Medina-Noyola, J.M. Mendez-Alcaraz, J. Chem. Phys. 119, 7461 (2003)CrossRefADSGoogle Scholar
  12. 12.
    P.X. Viveros-Mendez, J.M. Mendez-Alcaraz, P. Gonzalez-Mozuelosa, J. Chem. Phys. 128, 014701 (2008)CrossRefADSGoogle Scholar
  13. 13.
    A.R. Bausch, M.J. Bowick, A. Cacciuto, A.D. Dinsmore, M.F. Hsu, D.R. Nelson, M.G. Nikolaides, A. Travesset, D.A. Weitz, Science 299, 1716 (2003)CrossRefADSGoogle Scholar
  14. 14.
    J. Ruiz-Garcia, R. Gamez-Corrales, B.I. Ivlev, Phys. Rev. E 58, 660 (1998)CrossRefADSGoogle Scholar
  15. 15.
    F. Ghezzi, J.C. Earnshaw, J. Phys.: Condens. Matter 9, L517 (1997)CrossRefADSGoogle Scholar
  16. 16.
    F. Ghezzi, J.C. Earnshaw, M. Finnis, M. McCluney, J. Colloid Interface Sci. 238, 433 (2001)CrossRefGoogle Scholar
  17. 17.
    R.P. Sear, S.W. Chung, G. Markovich, W.M. Gelbart, J.R. Heath, Phys. Rev. E 59, R6255 (1999)CrossRefADSGoogle Scholar
  18. 18.
    M.G. Nikolaides, A.R. Bausch, M.F. Hsu, A.D. Dinsmore, M.P. Brenner, D.A. Weitz, C. Gay, Nature 420, 299 (2002)CrossRefADSGoogle Scholar
  19. 19.
    M.M. Nicolson, Proc. Cambridge Philos. Soc. 45, 288 (1949)CrossRefzbMATHGoogle Scholar
  20. 20.
    P.A. Kralchevsky, V.N. Paunov, I.B. Ivanov, K. Nagayama, J. Colloid Interface Sci. 151, 79 (1992)CrossRefGoogle Scholar
  21. 21.
    D. Stamou, C. Duschl, D. Johannsmann, Phys. Rev. E 62, 5263 (2000)CrossRefADSGoogle Scholar
  22. 22.
    J.C. Loudet, A.M. Alsayed, J. Zhang, A.G. Yodh, Phys. Rev. Lett. 94, 018301 (2005)CrossRefADSGoogle Scholar
  23. 23.
    M. Oettel, A. Domínguez, S. Dietrich, Phys. Rev. E 71, 051401 (2005)CrossRefADSGoogle Scholar
  24. 24.
    A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 127, 204706 (2007)CrossRefADSGoogle Scholar
  25. 25.
    H. Lehle, E. Noruzifar, M. Oettel, Eur. Phys. J. E 26, 151 (2008)CrossRefGoogle Scholar
  26. 26.
    M. Megens, J. Aizenberg, Nature 424, 1014 (2003)CrossRefADSGoogle Scholar
  27. 27.
    L. Foret, A. Würger, Phys. Rev. Lett. 92, 058302 (2004)CrossRefADSGoogle Scholar
  28. 28.
    A. Domínguez, M. Oettel, S. Dietrich, J. Phys.: Condens. Matter 17, S3387 (2005)CrossRefADSGoogle Scholar
  29. 29.
    K. Danov, P. Kralchevsky, Adv. Colloid Interface Sci. 154, 91 (2010)CrossRefGoogle Scholar
  30. 30.
    M. Oettel, S. Dietrich, Langmuir 24, 1425 (2008)CrossRefGoogle Scholar
  31. 31.
    A. Domínguez, M. Oettel, S. Dietrich, J. Chem. Phys. 128, 114904 (2008)CrossRefADSGoogle Scholar
  32. 32.
    H. Diamant, J. Phys. Soc. Jpn. 78, 041002 (2009)CrossRefADSGoogle Scholar
  33. 33.
    B.X. Cui, H. Diamant, B.H. Lin, Phys. Rev. Lett. 89, 188302 (2002)CrossRefADSGoogle Scholar
  34. 34.
    A. Würger, EPL 75, 978 (2006)CrossRefADSGoogle Scholar
  35. 35.
    A. Würger, Phys. Rev. E 74, 041402 (2006)CrossRefMathSciNetADSGoogle Scholar
  36. 36.
    A. Domínguez, M. Oettel, S. Dietrich, EPL 77, 68002 (2007)CrossRefADSGoogle Scholar
  37. 37.
    P.A. Kralchevsky, V.N. Paunov, K. Nagayama, J. Fluid Mech. 299, 105 (1995)CrossRefADSzbMATHGoogle Scholar
  38. 38.
    P.A. Kralchevsky, K. Nagayama, Particles at Fluid Interfaces (Elsevier, Amsterdam, 2001)Google Scholar
  39. 39.
    A. Sangani, C. Lu, K. Su, J. Schwarz, Phys. Rev. E 80, 011603 (2009)CrossRefADSGoogle Scholar
  40. 40.
    L. Schimmele, M. Napiorkowski, S. Dietrich, J. Chem. Phys. 127, 164715 (2007)CrossRefADSGoogle Scholar
  41. 41.
    A. Domínguez, in Structure and Functional Properties of Colloidal Systems, edited by R. Hidalgo-Àlvarez (CRC Press, Boca Raton, 2010), pp. 31--59Google Scholar
  42. 42.
    Interfacial gradients are of $O(1)$ only on the scale of $a$, which can be inferred from the following qualitative reasoning. For small deformations $u$ of a flat interface one has $\nabla_{\parallel} u \approx f/(2\pi\gamma r)$, where $r$ is the distance from the particle. Due to the stability condition $|f| \lesssim \gamma a$ (eq. (f_small2)), one has $|\nabla_{\parallel} u|\sim 1$ only for $r\sim a$. Nevertheless, one can still apply the linear theory by introducing the notion of an effective colloidal particle which encompasses the whole region with strong interfacial gradients. From the above reasoning it follows that the size of this effective particle is of the order of $a$. Therefore the free energy corresponding to this region is $\sim a^2$, i.e., it contributes only to the subleading term compared to the leading one $\sim f^2\ln(R_0/a)$ (for which we assume $f\sim a$)Google Scholar
  43. 43.
    J. Guzowski, PhD thesis, unpublishedGoogle Scholar
  44. 44.
    R. Rosso, E.G. Virga, Phys. Rev. E 68, 012601 (2003)CrossRefMathSciNetADSGoogle Scholar
  45. 45.
    M. Brinkmann, J. Kierfeld, R. Lipowsky, J. Phys. A: Math. Gen. 37, 11547 (2004)CrossRefMathSciNetADSzbMATHGoogle Scholar
  46. 46.
    J.D. Jackson, Classical Electrodynamics, 2nd edition (Wiley, New York, 1975)Google Scholar
  47. 47.
    D.C. Morse, T.A. Witten, Europhys. Lett. 22, 549 (1993)CrossRefADSGoogle Scholar
  48. 48.
    K. Brakke, Exp. Math. 1, 141 (1992)MathSciNetzbMATHGoogle Scholar
  49. 49.
    L.A. Segel, Mathematics Applied to Continuum Mechanics (Dover, New York, 1987)Google Scholar
  50. 50.
    In calculating $\delta F$ we have ignored the correction $\delta x$, which also depends on $\alpha$ (see eq. (xcmu)), but gives a contribution of the order $(f^2/\gamma)\times O((a/R_0)^3)$Google Scholar
  51. 51.
    V. Blickle, J. Mehl, C. Bechinger, Phys. Rev. E 79, 060104 (2009)CrossRefADSGoogle Scholar
  52. 52.
    I.I. Smalyukh, S. Chernyshuk, B.I. Lev, A.B. Nych, U. Ognysta, V.G. Nazarenko, O.D. Lavrentovich, Phys. Rev. Lett. 93, 117801 (2004)CrossRefADSGoogle Scholar
  53. 53.
    M. Oettel, A. Domínguez, M. Tasinkevych, S. Dietrich, Eur. Phys. J. E 28, 99 (2009)CrossRefGoogle Scholar
  54. 54.
    D. Langbein, Capillary Surfaces, 2nd edition (Springer, Berlin, 2002)Google Scholar
  55. 55.
    A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, Vol. 1, 2nd edition (Gordon and Breach, New York, 1986)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institut für Theoretische und Angewandte PhysikMax-Planck-Institut für MetallforschungStuttgartGermany
  2. 2.Universität StuttgartStuttgartGermany

Personalised recommendations