Advertisement

The European Physical Journal E

, Volume 33, Issue 3, pp 211–218 | Cite as

Thermo-responsive copolymer coatings for flow regulation on demand in glass microcapillaries

  • Y. Zhang
  • A. L. Yarin
Regular Article

Abstract.

This study presents thermo-responsive on-demand regulation of water flow rate in glass microcapillaries with a recently developed water-stable, stimuli-responsive poly(methyl methacrylate/N-isopropyl acrylamide) [P(MMA/NIPAM)] copolymer grafted at the inner walls. It is shown that the grafted coatings are stable and can withstand significant tractions under temperature variation. Such microcapillaries allow flow regulation on demand by changing temperature across the lower critical solution temperature (LCST) of the copolymer layer, which makes it swell or shrink, thus changing the bore available for pressure-driven flow. The grafted copolymer layers were subjected to different pressure drops applied to the capillary open ends, as well as to periodic temperature variation across the copolymer LCST to determine the best grafting conditions for microfluidic operation. Then, by varying the temperature, the flow rate in the capillaries was changed periodically on demand due to the swelling/shrinkage of the grafted copolymer layer. It was also shown that the entrapped air bubbles are present in the coating which can result in an apparent slip.

Keywords

Pressure Drop Slip Length Apparent Slip Copolymer Coating Isopropyl Acrylamide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Iwata, M. Oodate, Y. Uyama, H. Amemiya, Y. Ikada, J. Membr. Sci. 55, 119 (1991)CrossRefGoogle Scholar
  2. 2.
    Y.M. Lee, J.K. Shim, Polymer 38, 1227 (1997)CrossRefGoogle Scholar
  3. 3.
    S. Akerman, P. Viinikka, B. Svarfvar, K. Putkonen, K. Jarvinen, K. Kontturi, J. Nasman, A. Urtti, P. Paronen, Int. J. Pharm. 164, 29 (1998)CrossRefGoogle Scholar
  4. 4.
    L. Liang, X. Feng, L. Peurrung, V. Viswanathan, J. Membr. Sci. 162, 235 (1999)CrossRefGoogle Scholar
  5. 5.
    W.Y. Wang, L. Chen, X. Xu, J. Appl. Polym. Sci. 101, 833 (2006)CrossRefGoogle Scholar
  6. 6.
    Q. Fu, G.V.R. Rao, T.L. Ward, Y. Lu, G.P. Lopez, Langmuir 23, 170 (2007)CrossRefGoogle Scholar
  7. 7.
    H. Alem, A.S. Duwez, P. Lussis, P. Lipnik, A.M. Jonas, S. Demoustier-Champagne, J. Membr. Sci. 308, 75 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Hesampour, T. Huuhilo, K. Makinen, M. Manttari, M. Nystrom, J. Membr. Sci. 310, 85 (2008)CrossRefGoogle Scholar
  9. 9.
    Y. Zhang, A.L. Yarin, J. Mater. Chem. 19, 4732 (2009)CrossRefGoogle Scholar
  10. 10.
    L. Liang, X. Feng, J. Liu, P.C. Rieke, G.E. Fryxell, Macromolecules 31, 7845 (1998)CrossRefADSGoogle Scholar
  11. 11.
    Y. Wang, Y.H. Dong, J. Teng, W.Y. Lai, Z.H. Mai, Mater. Lett. 59, 2588 (2005)CrossRefGoogle Scholar
  12. 12.
    I. Luzinov, K.L.S. Iyer, V. Klep, B. Zdyrko, US patent 7,026,014 B2, Apr. 11 (2006)Google Scholar
  13. 13.
    B. Zdyrko, K.L.S. Iyer, I. Luzinov, Polymer 47, 272 (2006)CrossRefGoogle Scholar
  14. 14.
    O. Burtovyy, V. Klep, H.C. Chen, R.K. Hu, C.C. Lin, I. Luzinov, J. Macromol. Sci. Part B-Phys. 46, 137 (2007)CrossRefGoogle Scholar
  15. 15.
    B. Zdyrko, V. Klep, I. Luzinov, Langmuir 19, 10179 (2003)CrossRefGoogle Scholar
  16. 16.
    D. Mohanta, F. Singh, D.K. Avasthi, A. Choudhury, CEJP 4, 187 (2006)ADSGoogle Scholar
  17. 17.
    K.L. Mittal, A. Pizzi (Editors), Adhesion Promotion Techniques: Technological Applications (Marcel Dekker, New York, 1999) pp. 271-289Google Scholar
  18. 18.
    B.Y. Kim, L.Y. Hong, Y.M. Chung, D.P. Kim, C.S. Lee, Adv. Funct. Mater. 19, 3796 (2009)CrossRefGoogle Scholar
  19. 19.
    A.V. Bazilevsky, A.L. Yarin, C.M. Megaridis, Lab. Chip 7, 152 (2008)CrossRefGoogle Scholar
  20. 20.
    S. Sinha Ray, P Chando, A.L. Yarin, Nanotechnology 20, 095711 (2009)CrossRefADSGoogle Scholar
  21. 21.
    S. Agarwal, A. Greiner, J.H. Wendorff, Adv. Funct. Mater. 19, 2863 (2009)CrossRefGoogle Scholar
  22. 22.
    G.A.C.M. Spierings, J. Mater. Sci. 28, 6261 (1993)CrossRefADSGoogle Scholar
  23. 23.
    Y. Cheng, M. Yen, C. Wei, Y. Chuang, T. Young, J. Micromech. Microeng. 15, 1147 (2005)CrossRefADSGoogle Scholar
  24. 24.
    L. Prandtl, O.G. Tietjens, Applied Hydro- and Aero\-mechanics (Dover Publications, New York, 1957)Google Scholar
  25. 25.
    G.K. Batchelor, An Introduction to Fluid Mechanics (Cambridge University Press, Cambridge, 1970)Google Scholar
  26. 26.
    M.S. Bobji, V. Kumar, A. Asthana, R.N. Govardhan, Langmuir 25, 12120 (2009)CrossRefGoogle Scholar
  27. 27.
    E. Lauga, H.A. Stone, J. Fluid Mech. 489, 55 (2003)zbMATHCrossRefMathSciNetADSGoogle Scholar
  28. 28.
    M. Raffel, C. Willert, J. Kompenhans, Particle Image Velocimetry (Springer, Berlin, 1998)Google Scholar
  29. 29.
    D.C. Tretheway, C.D. Meinhart, Phys. Fluids 14, L9 (2002)CrossRefADSGoogle Scholar
  30. 30.
    Y. Sugii, K. Okamoto, J. Visualization 7, 9 (2004)CrossRefGoogle Scholar
  31. 31.
    P. Joseph, C. Cottin-Bizonne, J.M. Benoit, C. Ybert, C. Journet, P. Tabeling, L. Bocquet, Phys. Rev. Lett. 97, 156104 (2006)CrossRefADSGoogle Scholar
  32. 32.
    A. Steinberger, C. Cottin-Bizonne, P. Kleinmann, E. Charlaix, Nat. Mater. 6, 665 (2007)CrossRefADSGoogle Scholar
  33. 33.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Kluwer, Dordrecht, 1991)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Y. Zhang
    • 1
  • A. L. Yarin
    • 1
    • 2
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Center for Smart InterfacesUniversität DarmstadtDarmstadtGermany

Personalised recommendations