The European Physical Journal E

, Volume 32, Issue 3, pp 229–242 | Cite as

Microphase separation in polymer solutions containing surfactants

  • E. N. Govorun
  • A. S. Ushakova
  • A. R. Khokhlov
Regular Article


A microphase separation in solutions containing a polymer and a mixture of two solvents, one of which consists of amphiphilic molecules (surfactant), is considered theoretically in the weak-segregation regime. A surfactant molecule is described as a dimer consisting of hydrophobic and polar parts. The energy gain due to the orientation of surfactant molecules can lead to the appearance of non-homogeneities in the solution, where density fluctuations cause the orientational ordering of surfactant molecules. The difference in the interaction energies of hydrophobic and polar groups of a surfactant with solvent is considered as a main reason for orienting surfactant molecules. The free energy is calculated for various morphologies (lamellar, cylindrical hexagonal, spherical particles arranged at different cubic lattices). The phase diagrams are presented. With worsening the solvent quality, the transitions from disordered to a macro-separated state at low polymer and surfactant concentrations or to a body-centered-cubic, then hexagonal, and then lamellar structure at high polymer and surfactant concentrations are predicted. The amphiphilicity degree of surfactant molecules should exceed a certain critical value to make a microstructure formation possible. The period of the lamellar microstructure decreases with increasing the surfactant and polymer concentrations.


Surfactant Surfactant Concentration Polymer Concentration Surfactant Molecule Random Phase Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Addarwal, Block Copolymers (Pleninum Press, New York, 1970)Google Scholar
  2. 2.
    J.J. Burke, V. Weiss, Block and Graft Copolymers (Syracuse University Press, Syracuse NY, 1973)Google Scholar
  3. 3.
    F.S. Bates, G.H. Fredrickson, Phys. Today 52, 32 (1999)CrossRefGoogle Scholar
  4. 4.
    S. Jain, F.S. Bates, Science 300, 460 (2003)CrossRefADSGoogle Scholar
  5. 5.
    W.M. Jornitza, T.H. Meltzerb, Filtr. Sep. 43, 38 (2006)CrossRefGoogle Scholar
  6. 6.
    J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, 1995)Google Scholar
  7. 7.
    A.C. Edrington, A.M. Urbas, P. de Rege, C.X. Chen, T.M. Swager, N. Hadjichristidis, M. Xenidou, L.J. Fetters, J.D. Joannopoulos, Y. Fink, E.L. Thomas, Adv. Mater. 13, 421 (2001)CrossRefGoogle Scholar
  8. 8.
    K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001)Google Scholar
  9. 9.
    S. Valkama, H. Kosonen, J. Ruokolainen, T. Haatainen, M. Torkkeli, R. Serimaa, G. Brinke, O. Ikkala, Nat. Mater. 3, 872 (2004)CrossRefADSGoogle Scholar
  10. 10.
    Y.J. Liua, X.W. Suna, H.T. Daib, J.H. Liub, K.S. Xub, Opt. Mater. 27, 1451 (2005)CrossRefADSGoogle Scholar
  11. 11.
    E.M. Heckman, J.G. Grote, F.K. Hopkins, P.P. Yaney, Appl. Phys. Lett. 89, 181116 (2006)CrossRefADSGoogle Scholar
  12. 12.
    P.S. Stoylov, Molecular and Colloidal Electro-Optics (Taylor & Francis, London, 2006)Google Scholar
  13. 13.
    P.G. De Gennes, C. Taupin, J. Phys. Chem. 86, 2294 (1982)CrossRefGoogle Scholar
  14. 14.
    J.N. Israelachvili, Intermolecular & Surface Forces (Academic press, London, 1991)Google Scholar
  15. 15.
    R. Lipowsky, Nature 349, 475 (1991)CrossRefADSGoogle Scholar
  16. 16.
    M.-F. Ficheux, L. Bonakdar, F. Lead-Caideron, J. Bibette, Langmuir 14, 2702 (1998)CrossRefGoogle Scholar
  17. 17.
    D. Acharya, S. Sharma, C. Rodrigues-Abreu, K. Aramaki, J. Phys. Chem. B 110, 20224 (2006)CrossRefGoogle Scholar
  18. 18.
    E. Radlinska, T. Gulik-Krzywicki, F.Lafuma, D. Langevin, W. Urbach, C. Williams, R. Ober, Phys. Rev. Lett. 74, 4237 (1995)CrossRefADSGoogle Scholar
  19. 19.
    M.-F. Ficheux, A.-M. Bellocq, F. Nallet, Colloids Surf. A. 123, 253 (1997)CrossRefGoogle Scholar
  20. 20.
    I. Akiba, H. Masunaga, S. Murata, K. Sasaki, E-polymers 036 (2006).Google Scholar
  21. 21.
    W.-T. Wu, L. Shi, Q. Zhu, Y. Wang, W. Pang, Mater. Lett. 62, 2762 (2008)CrossRefGoogle Scholar
  22. 22.
    J. Ruokolainen, J. Tanner, G. ten Brinke, O. Ikkala, M. Torkkeli, R. Serimaa, Macromolecules 28, 7779 (1995)CrossRefADSGoogle Scholar
  23. 23.
    J. Ruokolainen, J. Tanner, G. ten Brinke, O. Ikkala, M. Torkkeli, R. Serimaa, Macromolecules 29, 3409 (1996)CrossRefADSGoogle Scholar
  24. 24.
    J. Ruokolainen, M. Torkkeli, R. Serimaa, B. Komanschek, O. Ikkala, G. ten Brinke, Phys. Rev. E 54, 6646 (1996)CrossRefADSGoogle Scholar
  25. 25.
    E. Hecht, H. Hoffmann, Langmuir 10, 86 (1994)CrossRefGoogle Scholar
  26. 26.
    B. Nandan, C. Lee, H. Chen, W. Chen, Macromolecules 38, 10117 (2005)CrossRefADSGoogle Scholar
  27. 27.
    S. Sharma, H. Kunieda, J. Esquena, C. Abreu, J. Colloid Interface Sci. 299, 297 (2006)CrossRefGoogle Scholar
  28. 28.
    S. Xing, G. Zhao, E-polymers 018 (2007)Google Scholar
  29. 29.
    H. Hoffmann, C. Thunig, P. Schmiedel, U. Munkert, Langmuir 10, 3972 (1994)CrossRefGoogle Scholar
  30. 30.
    J. Oberdisse, C. Couve, J. Appell, J. Berret, C. Ligoure, G. Porte, Langmuir 12, 1212 (1996)CrossRefGoogle Scholar
  31. 31.
    Y. Yan, H. Hoffmann, A. Leson, C. Mayer, J. Phys. Chem. B 111, 6161 (2007)CrossRefGoogle Scholar
  32. 32.
    I.W. Hamley, Introduction to Soft Matter: Polymers, Colloids, Amphiphiles, Liquid Crystals (Wiley, Chichester, 2000)Google Scholar
  33. 33.
    T. Nylander, Y. Samoshina, B. Lindman, J. Colloid Interface Sci. 123, 105 (2006)CrossRefGoogle Scholar
  34. 34.
    A. Diez-Pascual, A. Compostizo, A. Crespo-Colin, R. Rubio, R. Miller, J. Colloid Interface Sci. 307, 398 (2007)CrossRefGoogle Scholar
  35. 35.
    R. José, G. Ochoa, M. Munoz, D. Reinoso, P. Sasia, F. Escudero, F. Río, J. Mestre, J. Torrecilla, E-polymers 030 (2008)Google Scholar
  36. 36.
    J. Brake, A. Mezera, N. Abbott, Langmuir 19, 6436 (2003)CrossRefGoogle Scholar
  37. 37.
    J. Brake, A. Mezera, N. Abbott, Langmuir 19, 8629 (2003)CrossRefGoogle Scholar
  38. 38.
    A.S. Ushakova, E.N. Govorun, A.R. Khokhlov, J. Phys.: Condens. Matter 18, 915 (2006)CrossRefADSGoogle Scholar
  39. 39.
    L. Onsager, NY Ann. Acad. Sci. 51, 627 (1949)CrossRefADSGoogle Scholar
  40. 40.
    V.V. Vasilevskaya, P.G. Khalatur, A.R. Khokhlov, Macromolecules 36, 10103 (2003)CrossRefADSGoogle Scholar
  41. 41.
    G.H. Fredrickson, Macromolecules 26, 2825 (1993)CrossRefADSGoogle Scholar
  42. 42.
    A.S. Ushakova, E.N. Govorun, A.R. Khokhlov, Polym. Sci. A 50, 854 (2008)CrossRefGoogle Scholar
  43. 43.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979)Google Scholar
  44. 44.
    L. Leibler, Macromolecules 13, 1602 (1980)CrossRefADSGoogle Scholar
  45. 45.
    I.Ya. Yerukhimovich, Polym. Sci. U.S.S.R. 24, 2232 (1982)CrossRefGoogle Scholar
  46. 46.
    I.Ya. Erukhimovich, in Nanostructured Soft Matter Experiment, Theory, Simulation and Perspectives, edited by A.V. Zvelindovsky (Springer, Dordrecht, 2007)Google Scholar
  47. 47.
    E. Dormidontova, G. ten Brinke, Colloids Surf. A: Physicochem. Eng. Aspects 147, 249 (1999)CrossRefGoogle Scholar
  48. 48.
    A. Olemskoi, A. Savelyev, Phys. Rep. 419, 145 (2005)CrossRefADSGoogle Scholar
  49. 49.
    B.A. Veytsman, J. Chem. Phys. 94, 8499 (1990)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • E. N. Govorun
    • 1
  • A. S. Ushakova
    • 1
  • A. R. Khokhlov
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations