The European Physical Journal E

, Volume 32, Issue 4, pp 399–409 | Cite as

Molecular dynamics simulations of cytochrome c unfolding in AOT reverse micelles: The first steps

Regular Article

Abstract.

This paper explores the reduced form of horse cytochrome c confined in reverse micelles (RM) of sodium bis-(2-ethylhexyl) sulfosuccinate (AOT) in isooctane by molecular dynamics simulation. RMs of two sizes were constructed at a water content of Wo = [ H_2O ]/[AOT] = 5.5 and 9.1. Our results show that the protein secondary structure and the heme conformation both depend on micellar hydration. At low hydration, the protein structure and the heme moiety remain stable, whereas at high water content the protein becomes unstable and starts to unfold. At Wo = 9.1 , according to the X-ray structure, conformational changes are mainly localized on protein loops and around the heme moiety, where we observe a partial opening of the heme crevice. These findings suggest that within our time window (10ns), the structural changes observed at the heme level are the first steps of the protein denaturation process, previously described experimentally in micellar solutions. In addition, a specific binding of AOT molecules to a few lysine residues of the protein was found only in the small-sized RM.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.L. Luisi, J. Straub, Reverse Micelles (Plenum, New York, 1984)Google Scholar
  2. 2.
    M.P. Pileni, Structure and Reactivity in Reverse Micelles (Elsevier Science B.V., Amsterdam, 1989)Google Scholar
  3. 3.
    T.K. De, A. Maitra, Adv. Colloid Interface Sci. 59, 95 (1995)CrossRefGoogle Scholar
  4. 4.
    M.A. López-Quintela, Curr. Opin. Colloid Interface Sci. 9, 264 (2004)CrossRefGoogle Scholar
  5. 5.
    M.P. Pileni, J. Phys. Chem. 97, 6961 (1993)CrossRefGoogle Scholar
  6. 6.
    J. Fendler, Membrane Mimetic Chemistry (Wiley, New York, 1982)Google Scholar
  7. 7.
    M. Waks, Proteins Struct. Funct. Genet. 1, 4 (1986)CrossRefGoogle Scholar
  8. 8.
    G.G. Chang, E.M. Huang, H.U. Hung, Proc. Natl. Sci. Counc. 24, 89 (2000)Google Scholar
  9. 9.
    S. Abel, F. Sterpone, S. Bandyopadhyay, M. Marchi, J. Phys. Chem. B 108, 19458 (2004)CrossRefGoogle Scholar
  10. 10.
    M.H. Alaimo, T.F. Kumosinski, Langmuir 13, 2007 (1997)CrossRefGoogle Scholar
  11. 11.
    E.N. Brodskaya, G.V. Mudzhikova, Mol. Phys. 104, 3635 (2006)CrossRefADSGoogle Scholar
  12. 12.
    J. Faeder, M.V. Albert, B.M. Ladanyi, Langmuir 19, 2514 (2003)CrossRefGoogle Scholar
  13. 13.
    J. Faeder, B.M. Ladanyi, J. Phys. Chem. B 104, 1033 (2000)CrossRefGoogle Scholar
  14. 14.
    J. Faeder, B.M. Ladanyi, J. Phys. Chem. B 109, 6732 (2005)CrossRefGoogle Scholar
  15. 15.
    A. Gardner, V.R. Vasquez, A. Clifton, O.A. Graeve, Fluid Phase Equilibria 262, 264 (2007)CrossRefGoogle Scholar
  16. 16.
    M. Pomata, H.H.D. Laria, M.S. Skaf, M.D. Elola, J. Chem. Phys. 129, 244503 (2008)CrossRefADSGoogle Scholar
  17. 17.
    J. Chowdhary, B.M. Ladanyi, J. Phys. Chem. B 113, 15029 (2009)CrossRefGoogle Scholar
  18. 18.
    A.V. Nevidimov, V.F. Razumov, Mol. Phys. 107, 2169 (2009)CrossRefGoogle Scholar
  19. 19.
    G. Longhi, S.L. Fornili, V.T. Liveri, S. Abbate, D. Rebeccani, L. Ceraulo, F. Gangemi, Phys. Chem. Chem. Phys. 12, 4694 (2010)CrossRefGoogle Scholar
  20. 20.
    S. Abel, M. Waks, W. Urbach, M. Marchi, J. Am. Chem. Soc. 128, 382 (2006)CrossRefGoogle Scholar
  21. 21.
    J. Tian, A.E. Garcia, Biophys. J. 96, L57 (2009)CrossRefGoogle Scholar
  22. 22.
    V.S.V. Chaitanya, S. Senapati, J. Am. Chem. Soc. 130, 1866 (2008)CrossRefGoogle Scholar
  23. 23.
    S. Mukherjee, P. Chowdhury, F. Gai, J. Phys. Chem. B 110, 11615 (2006)CrossRefGoogle Scholar
  24. 24.
    D.K. Eggers, J.S. Valentine, Protein Sci. 10, 250 (2001)CrossRefGoogle Scholar
  25. 25.
    G.R. Moore, G.W. Pettigrew, Cytochromes c. Evolutionary, Structural, and Physicochemical Aspects (Springer-Verlag, Berlin, Heidelberg, New York, 1990)Google Scholar
  26. 26.
    X. Liu, C.N. Kim, J. Yang, J.R., X. Wang, Cell 86, 147 (1996)CrossRefGoogle Scholar
  27. 27.
    D. Frishman, P. Argos, Proteins 23, 566 (1995)CrossRefGoogle Scholar
  28. 28.
    D.E. Koppel, J. Chem. Phys. 57, 4814 (1972)CrossRefADSGoogle Scholar
  29. 29.
    P. Hildebrandt, M. Stockburger, Biochemistry 28, 6722 (1989)CrossRefGoogle Scholar
  30. 30.
    T.J.T. Pinheiro, G.A. Elove, A. Watts, H. Roder, Biochemistry 36, 13122 (1997)CrossRefGoogle Scholar
  31. 31.
    J.D. Cortese, A.L. Voglino, C.R. Hackenbrock, Biochemistry 37, 6402 (1998)CrossRefGoogle Scholar
  32. 32.
    V.E. Bychkova, A.E. Dujsekina, S.I. Klenin, E.I. Tiktopulo, V.N. Uversky, O.B. Ptitsyn, Biochemistry 35, 6058 (1996)CrossRefGoogle Scholar
  33. 33.
    P. Brochette, C. Petit, M.P. Pileni, J. Phys. Chem. 92, 3505 (1988)CrossRefGoogle Scholar
  34. 34.
    K.M. Larsson, M.P. Pileni, Eur. Biophys. J. 21, 409 (1993)CrossRefGoogle Scholar
  35. 35.
    M.-P. Pileni, T. Zemb, C. Petit, Chem. Phys. Lett. 118, 414 (1985)CrossRefADSGoogle Scholar
  36. 36.
    K. Vos, C. Laane, S.R. Weijers, A. Hoek, C. Veeger, A.J.W.G. Visser, Eur. J. Biochem. 169, 259 (1987)CrossRefGoogle Scholar
  37. 37.
    K. Naoe, K. Noda, M. Kawagoe, M. Imai, Colloids Surf. B 38, 179 (2004)CrossRefGoogle Scholar
  38. 38.
    G.W. Bushnell, G.V. Louie, G.D. Brayer, J. Mol. Biol. 214, 585 (1990)CrossRefGoogle Scholar
  39. 39.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983)CrossRefADSGoogle Scholar
  40. 40.
    A.D. MacKerell, J. Phys. Chem. 99, 1846 (1995)CrossRefGoogle Scholar
  41. 41.
    B.K. Rai, S.M. Durbin, E.W. Prohofsky, J.T. Sage, M.K. Ellison, A. Roth, W.R. Scheidt, W. Sturhahn, E.E. Alp, J. Am. Chem. Soc. 125, 6927 (2003)CrossRefGoogle Scholar
  42. 42.
    F. Autenrieth, E. Tajkhorshid, J. Baudry, Z. Luthey-Schulten, J. Comp. Chem. 25, 1613 (2004)CrossRefGoogle Scholar
  43. 43.
    A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, M. Karplus, J. Phys. Chem. B 102, 3586 (1998)CrossRefGoogle Scholar
  44. 44.
    J. Chanda, S. Chakraborty, S. Bandyopadhyay, J. Phys. Chem. B 109, 471 (2005)CrossRefGoogle Scholar
  45. 45.
    J.W. Shelley, K. Klein, M.L., Int. J. Quantum Chem: Quantum Biol. Sym. 17, 103 (1990)CrossRefGoogle Scholar
  46. 46.
    D.P. Tieleman, D. van der Spoel, H.J.C. Berendsen, J. Phys. Chem. B 104, 6380 (2000)CrossRefGoogle Scholar
  47. 47.
    F. Sterpone, G. Briganti, C. Pierleoni, Langmuir 17, 5103 (2001)CrossRefGoogle Scholar
  48. 48.
    C.D. Bruce, S. Senapati, M.L. Berkowitz, L. Perera, M.D.E. Forbes, J. Phys. Chem. B 106, 10902 (2002)CrossRefGoogle Scholar
  49. 49.
    T.T. Chong, R. Hashim, R.A. Bryce, J. Phys. Chem. B 110, 4978 (2006)CrossRefGoogle Scholar
  50. 50.
    P. Konidala, L. He, B. Niemeyer, J. Mol. Graphics Modelling 25, 77 (2006)CrossRefGoogle Scholar
  51. 51.
    F. Sterpone, G. Marchetti, C. Pierleoni, M. Marchi, J. Phys. Chem. B 110, 11504 (2006)CrossRefGoogle Scholar
  52. 52.
    D.J. Tobias, M.L. Klein, J. Phys. Chem. 100, 6637 (1996)CrossRefGoogle Scholar
  53. 53.
    R. Allen, S. Bandyopadhyay, M.L. Klein, Langmuir 16, 10547 (2000)CrossRefGoogle Scholar
  54. 54.
    S. Senapati, M.L. Berkowitz, J. Phys. Chem. B 107, 12906 (2003)CrossRefGoogle Scholar
  55. 55.
    S. Abel, M. Waks, M. Marchi, W. Urbach, Langmuir 22, 9112 (2006)CrossRefGoogle Scholar
  56. 56.
    S. Salaniwal, S.T. Cui, P.T. Cummings, H.D. Cochran, Langmuir 15, 5188 (1999)CrossRefGoogle Scholar
  57. 57.
    S.J. Marrink, D.P. Tieleman, A.E. Mark, J. Phys. Chem. B 104, 12165 (2000)CrossRefGoogle Scholar
  58. 58.
    L. Lu, M.L. Berkowitz, J. Am. Chem. Soc. 106, 10254 (2004)CrossRefGoogle Scholar
  59. 59.
    X. Jun, S. Wenqi, L. Ganzuo, Z. Gaoyong, Chem. Phys. Lett. 438, 326 (2007)CrossRefADSGoogle Scholar
  60. 60.
    M. Jorge, Langmuir 24, 5714 (2008)CrossRefGoogle Scholar
  61. 61.
    A. Amararene, M. Gindre, J.-Y. Le Huérou, Phys. Rev. E 61, 682 (2000)CrossRefADSGoogle Scholar
  62. 62.
    S. Marsili, G.F. Signorini, R. Chelli, M. Marchi, P. Procacci, J. Comput. Chem. 31, 1106 (2010)Google Scholar
  63. 63.
    H.C. Andersen, J. Chem. Phys. 72, 2384 (1980)CrossRefADSGoogle Scholar
  64. 64.
    S. Nose, J. Chem. Phys. 81, 511 (1984)CrossRefADSGoogle Scholar
  65. 65.
    M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)CrossRefADSGoogle Scholar
  66. 66.
    M. Marchi, P. Procacci, J. Chem. Phys. 109, 5194 (1998)CrossRefADSGoogle Scholar
  67. 67.
    H. Gochman-Hecht, H. Bianco-Peled, J. Colloid Interface Sci. 297, 276 (2006)CrossRefGoogle Scholar
  68. 68.
    J.Y. Kim, S.R. Dungan, J. Phys. Chem. B 112, 5381 (2008)CrossRefGoogle Scholar
  69. 69.
    P. Procacci, R. Scateni, Int. J. Quantum Chem. 42, 1515 (1992)CrossRefGoogle Scholar
  70. 70.
    M. Marchi, F. Sterpone, M. Ceccarelli, J. Am. Chem. Soc. 124, 6787 (2002)CrossRefGoogle Scholar
  71. 71.
    W. Jordi, L.X. Zhou, M. Pilon, R.A. Demel, B. de Kruijff, J. Biol. Chem. 264, 2292 (1989)Google Scholar
  72. 72.
    H.H.J. De Jongh, J.A. Killian, B. De Kruijff, Biochemistry 31, 1636 (1992)CrossRefGoogle Scholar
  73. 73.
    L.J. Smith, R.J. Davies, W.F. van Gunsteren, Proteins 65, 702 (2006)CrossRefGoogle Scholar
  74. 74.
    W.L. DeLano, The PyMOL Molecular Graphics System (DeLano Scientific, San Carlos, CA, 2002)Google Scholar
  75. 75.
    W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996)CrossRefGoogle Scholar
  76. 76.
    R.W. Peterson, K. Anbalagan, C. Tommos, A.J. Wand, J. Am. Chem. Soc. 126, 9498 (2004)CrossRefGoogle Scholar
  77. 77.
    S. Akiyama, S. Takahashi, T. Kimura, K. Ishimori, I. Morishima, Y. Nishikawa, T. Fujisawa, Proc. Natl. Acad. Sci. U.S.A. 99, 1329 (2002)CrossRefADSGoogle Scholar
  78. 78.
    A. Luzar, D. Chandler, J. Chem. Phys. 98, 8160 (1993)CrossRefADSGoogle Scholar
  79. 79.
    R.A. Scott, A.G. Mauk, Cytochrome C: A Multidisciplinary Approach (University Science Books, Sausalito, 1996).Google Scholar
  80. 80.
    T.Y. Tsong, J. Biol. Chem. 249, 1988 (1974)Google Scholar
  81. 81.
    N.E. Levinger, Science 298, 1722 (2002)CrossRefGoogle Scholar
  82. 82.
    M.R. Harpham, B.M. Ladanyi, N.E. Levinger, J. Phys. Chem. B 109, 16891 (2005)CrossRefGoogle Scholar
  83. 83.
    R.D. Falcone, N.M. Correa, M.A. Biasutti, J.J. Silber, J. Colloid Interface Sci. 296, 356 (2006)CrossRefGoogle Scholar
  84. 84.
    B. Baruah, J.M. Roden, M. Sedgwick, N.M. Correa, D.C. Crans, N.E. Levinger, J. Am. Chem. Soc. 128, 12758 (2006)CrossRefGoogle Scholar
  85. 85.
    A.R. Bizzarri, S. Cannistraro, Phys. Rev. E 53, R3040 (1996)CrossRefADSGoogle Scholar
  86. 86.
    B. Bagchi, Chem. Rev. 105, 3197 (2005)CrossRefGoogle Scholar
  87. 87.
    S. Balasubramanian, B. Bagchi, J. Phys. Chem. B 105, 12529 (2001)CrossRefGoogle Scholar
  88. 88.
    V.P. Denisov, B. Halle, Faraday Discuss. 103, 227 (1996)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Commissariat à l’Energie Atomique, DSV/iBiTecS/SB2SM, CNRS URA2096Gif-sur-YvetteFrance
  2. 2.Laboratoire Imagerie ParamétriqueUPMCParisFrance
  3. 3.CNRS, LIP UMR7623ParisFrance

Personalised recommendations