The European Physical Journal E

, Volume 32, Issue 2, pp 127–134 | Cite as

Osmotic shrinkage in star/linear polymer mixtures

  • A. Wilk
  • S. Huißmann
  • E. Stiakakis
  • J. Kohlbrecher
  • D. Vlassopoulos
  • C. N. Likos
  • G. Meier
  • J. K. G. Dhont
  • G. Petekidis
  • R. Vavrin
Regular Article

Abstract.

Multiarm star polymers were used as model grafted colloidal particles with long hairs, to study their size variation due to osmotic forces arising from added linear homopolymers of smaller size. This is the origin of the depletion phenomenon that has been exploited in the past as a means to melt soft colloidal glasses by adding linear chains and analyzed using dynamic light scattering experiments and an effective interactions analysis yielding the depletion potential. Shrinkage is a generic phenomenon for hairy particles, which affects macroscopic properties and state transitions at high concentrations. In this work we present a small-angle neutron scattering study of star/linear polymer mixtures with different size ratios (varying the linear polymer molar mass) and confirm the depletion picture, i.e., osmotic star shrinkage. Moreover, we find that as the linear/star polymer size ratio increases for the same effective linear volume fraction ( c/c*with c*the overlapping concentration), the star shrinkage is reduced whereas the onset of shrinkage appears to take place at higher linear polymer volume fractions. A theoretical description of the force balance on a star polymer in solution, accounting for the classic Flory contributions, i.e. elastic and excluded volume, as well as the osmotic force due to the linear chains, accurately predicts the experimental findings of reduced star size as a function of linear polymer concentration. This is done in a parameter-free fashion, in which the size of the cavity created by the star, and from which the chains are excluded, is related to the radius of the former from first principles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.N. Likos, Phys. Rep. 348, 267 (2001)CrossRefADSGoogle Scholar
  2. 2.
    D. Vlassopoulos, G. Fytas, Adv. Polym. Sci., DOI: 10.1007/12\_2009\_31 (2010)Google Scholar
  3. 3.
    D. Vlassopoulos, J. Polym. Sci. Part B: Polym. Phys. 42, 2931 (2004)CrossRefADSGoogle Scholar
  4. 4.
    E. Stiakakis, G. Petekidis, D. Vlassopoulos, C.N. Likos, H. Iatrou, N. Hadjichristidis, J. Roovers, Europhys. Lett. 72, 664 (2005)CrossRefADSGoogle Scholar
  5. 5.
    M.E. Helgeson, N.J. Wagner, D. Vlassopoulos, J. Rheol. 51, 297 (2007)CrossRefADSGoogle Scholar
  6. 6.
    E. Stiakakis, D. Vlassopoulos, C.N. Likos, J. Roovers, G. Meier, Phys. Rev. Lett. 89, 208302 (2002)CrossRefADSGoogle Scholar
  7. 7.
    E. Stiakakis, D. Vlassopoulos, J. Roovers, Langmuir 19, 6645 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Asakura, F. Oosawa, J. Polym. Sci. 33, 183 (1958)CrossRefADSGoogle Scholar
  9. 9.
    F. Sciortino, P. Tartaglia, Adv. Phys. 54, 471 (2005)CrossRefADSGoogle Scholar
  10. 10.
    K.N. Pham, A.M. Puertas, J. Bergenholtz, S.U. Egelhaaf, A. Moussaid, P.N. Pusey, A.B. Schofield, M.E. Cates, M. Fuchs, W.C.K. Poon, Science 296, 104 (2002)CrossRefADSGoogle Scholar
  11. 11.
    A. Vrij, Pure Appl. Chem. 48, 471 (1976)CrossRefGoogle Scholar
  12. 12.
    C.N. Likos, C. Mayer, E. Stiakakis, G. Petekidis, J. Phys.: Condens. Matter 17, S3363 (2005)CrossRefADSGoogle Scholar
  13. 13.
    J.K.G. Dhont, M.P. Lettinga, Z. Dogic, T.A.J. Lenstra, H. Wang, S. Rathgeber, P. Carletto, L. Willner, H. Frielinghaus, P. Linder, Faraday Discuss. 123, 157 (2003)CrossRefGoogle Scholar
  14. 14.
    B. Loppinet, G. Fytas, D. Vlassopoulos, C.N. Likos, G. Meier, G.J. Liu, Macromol. Chem. Phys. 206, 163 (2005)CrossRefGoogle Scholar
  15. 15.
    A. Fernández-Nieves, A. Fernández-Barbero, B. Vincent, F.J. De las Nieves, J. Chem. Phys. 119, 10383 (2003)CrossRefADSGoogle Scholar
  16. 16.
    B.R. Saunders, B. Vincent, Colloid Polym. Sci. 275, 9 (1997)CrossRefGoogle Scholar
  17. 17.
    J. Roovers, L.-L. Zhou, P.M. Toporowski, M. van der Zwan, H. Iatrou, N. Hadjichristidis, Macromolecules 26, 4324 (1993)CrossRefADSGoogle Scholar
  18. 18.
    P. Strunz, J. Saroun, U. Keiderling, A. Wiedenmann, R. Przenioslo, J. Appl. Cryst. 33, 829 (2000)CrossRefGoogle Scholar
  19. 19.
    G.S. Grest, J.S. Huang, L.J. Fetters, D. Richter, Adv. Chem. Phys. XCIV, 67 (1996)CrossRefGoogle Scholar
  20. 20.
    D. Richter, O. Jucknischke, L. Willner, L.J. Fetters, M.J.S. Lin, J.S. Huang, J. Roovers, C. Toporovski, L.-L. Zhou, J. Phys. IV C8, 3 (1993)Google Scholar
  21. 21.
    L. Willner, O. Jucknischke, D. Richter, J. Roovers, L.-L. Zhou, P.M. Toporowski, L.J. Fetters, J.S. Huang, M.Y. Lin, N. Hadjichristidis, Macromolecules 27, 3821 (1994)CrossRefADSGoogle Scholar
  22. 22.
    W.D. Dozier, J.S. Huang, L.J. Fetters, Macromolecules 24, 2810 (1991)CrossRefADSGoogle Scholar
  23. 23.
    C.M. Marques, D. Izzo, T. Chariat, E. Mende, Eur. Phys. J. B 3, 353 (1998)CrossRefADSGoogle Scholar
  24. 24.
    M. Daoud, J.P. Cotton, J. Phys. (Paris) 43, 531 (1982)Google Scholar
  25. 25.
    J.S. Pedersen, M.C. Gerstenberg, Macromolecules 29, 1363 (1996)CrossRefADSGoogle Scholar
  26. 26.
    H. Benoit, J. Higgins, Polymers and Neutron Scattering (Oxford Science Publications, New York, 1994)Google Scholar
  27. 27.
    J. Roovers, Macromolecules 27, 5359 (1994)CrossRefADSGoogle Scholar
  28. 28.
    M. Rubinstein, R.H. Colby, Polymer Physics (Oxford University Press, New York, 2003)Google Scholar
  29. 29.
    F.S. Bates, G.D. Wignall, W.C. Koehler, Phys. Rev. Lett. 55, 2425 (1985)CrossRefADSGoogle Scholar
  30. 30.
    A.N. Semenov, D. Vlassopoulos, G. Fytas, G. Vlachos, G. Fleischer, J. Roovers, Langmuir 15, 358 (1999)CrossRefGoogle Scholar
  31. 31.
    A.A. Louis, P.G. Bolhuis, E.J. Meijer, J.P. Hansen, J. Chem. Phys. 116, 10547 (2002)CrossRefADSGoogle Scholar
  32. 32.
    M. Camargo, C.N. Likos, Phys. Rev. Lett. 104, 178301 (2010)CrossRefADSGoogle Scholar
  33. 33.
    T. Ohta, Y. Oono, Phys. Lett. A 89, 460 (1982)CrossRefADSGoogle Scholar
  34. 34.
    C. Mayer, C.N. Likos, Macromolecules 40, 1196 (2007)CrossRefADSGoogle Scholar
  35. 35.
    A. Jusufi, C.N. Likos, H. Löwen, J. Chem. Phys. 116, 11011 (2002)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • A. Wilk
    • 1
    • 2
  • S. Huißmann
    • 3
  • E. Stiakakis
    • 4
    • 5
  • J. Kohlbrecher
    • 1
  • D. Vlassopoulos
    • 4
    • 6
  • C. N. Likos
    • 3
    • 7
  • G. Meier
    • 5
  • J. K. G. Dhont
    • 5
  • G. Petekidis
    • 4
    • 6
  • R. Vavrin
    • 1
  1. 1.Laboratory for Neutron ScatteringETH Zurich & Paul Scherrer InstitutVilligen PSISwitzerland
  2. 2.Faculty of PhysicsA. Mickiewicz UniversityPoznanPoland
  3. 3.Department of PhysicsHeinrich-Heine-University of DüsseldorfDüsseldorfGermany
  4. 4.Institute of Electronic Structure and LaserFORTHCreteGreece
  5. 5.Institut für FestkörperforschungForschungszentrum JülichJülichGermany
  6. 6.Department of Materials Science & TechnologyUniversity of CreteCreteGreece
  7. 7.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations