The European Physical Journal E

, Volume 32, Issue 1, pp 25–34 | Cite as

Archimedean-like colloidal tilings on substrates with decagonal and tetradecagonal symmetry

  • M. Schmiedeberg
  • J. Mikhael
  • S. Rausch
  • J. Roth
  • L. Helden
  • C. Bechinger
  • H. Stark
Regular Article

Abstract.

Two-dimensional colloidal suspensions subjected to laser interference patterns with decagonal symmetry can form an Archimedean-like tiling phase where rows of squares and triangles order aperiodically along one direction (J. Mikhael et al., Nature 454, 501 (2008)). In experiments as well as in Monte Carlo and Brownian dynamics simulations, we identify a similar phase when the laser field possesses tetradecagonal symmetry. We characterize the structure of both Archimedean-like tilings in detail and point out how the tilings differ from each other. Furthermore, we also estimate specific particle densities where the Archimedean-like tiling phases occur. Finally, using Brownian dynamics simulations we demonstrate how phasonic distortions of the decagonal laser field influence the Archimedean-like tiling. In particular, the domain size of the tiling can be enlarged by phasonic drifts and constant gradients in the phasonic displacement. We demonstrate that the latter occurs when the interfering laser beams are not ideally adjusted.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)CrossRefADSGoogle Scholar
  2. 2.
    D. Levine, P.J. Steinhardt, Phys. Rev. Lett. 53, 2477 (1984)CrossRefADSGoogle Scholar
  3. 3.
    E. Macia, Rep. Prog. Phys. 69, 397 (2006)CrossRefADSGoogle Scholar
  4. 4.
    R. McGrath, J. Ledieu, E.J. Cox, R.D. Diehl, J. Phys.: Condens. Matter 14, R119 (2002)CrossRefADSGoogle Scholar
  5. 5.
    V. Fourne, Phys. Rev. B 67, 033406 (2003)CrossRefADSGoogle Scholar
  6. 6.
    M. Shimoda, T.J. Sato, A.P. Tsai, J.Q. Guo, Phys. Rev. B 62, 11288 (2000)CrossRefADSGoogle Scholar
  7. 7.
    K.J. Franke, H.R. Sharma, W. Theis, P. Gille, Ph. Ebert, K.H. Rieder, Phys. Rev. Lett. 89, 156104 (2002)CrossRefADSGoogle Scholar
  8. 8.
    J. Ledieu, J.T. Hoeft, D.E. Reid, J.A. Smerdon, R.D. Diehl, T.A. Lograsso, A.R. Ross, R. McGrath, Phys. Rev. Lett. 92, 135507 (2004)CrossRefADSGoogle Scholar
  9. 9.
    R.A. Tasca, N. Ferralis, R.D. Diehl, M.W. Cole, J. Phys.: Condens. Matter 16, S2911 (2004)CrossRefADSGoogle Scholar
  10. 10.
    S. Curtarolo, W. Setyawan, N. Ferralis, R.D. Diehl, M.W. Cole, Phys. Rev. Lett. 95, 136104 (2005)CrossRefADSGoogle Scholar
  11. 11.
    W. Setyawan, N. Ferralis, R.D. Diehl, M.W. Cole, S. Curtarolo, Phys. Rev. B 74, 125425 (2006)CrossRefADSGoogle Scholar
  12. 12.
    W. Setyawan, R.D. Diehl, N. Ferralis, M.W. Cole, S. Curtarolo, J. Phys.: Condens. Matter 19, 016007 (2007)CrossRefADSGoogle Scholar
  13. 13.
    B. Bilki, M. Erbudak, M. Mungan, Y. Weisskopf, Phys. Rev. B 75, 045437 (2007)CrossRefADSGoogle Scholar
  14. 14.
    M. Mungan, Y. Weisskopf, M. Erbudak, Phys. Rev. B 76, 195443 (2007)CrossRefADSGoogle Scholar
  15. 15.
    K. Pussi, M. Grierer, R.D. Diehl, J. Phys.: Condens. Matter 21, 474213 (2009)CrossRefADSGoogle Scholar
  16. 16.
    M. Schmiedeberg, J. Roth, H. Stark, Phys. Rev. Lett. 97, 158304 (2006)CrossRefADSGoogle Scholar
  17. 17.
    M. Schmiedeberg, J. Roth, H. Stark, Eur. Phys. J. E 24, 367 (2007)CrossRefGoogle Scholar
  18. 18.
    J. Mikhael, J. Roth, L. Helden, C. Bechinger, Nature 454, 501 (2008)CrossRefADSGoogle Scholar
  19. 19.
    M. Schmiedeberg, H. Stark, Phys. Rev. Lett. 101, 218302 (2008)CrossRefADSGoogle Scholar
  20. 20.
    J. Mikhael, M. Schmiedeberg, S. Rausch, J. Roth, H. Stark, C. Bechinger, Proc. Natl. Acad. Sci. U.S.A. 107, 7214 (2010)CrossRefADSGoogle Scholar
  21. 21.
    D. Levine, T.C. Lubensky, S. Ostlund, S. Ramaswamym, P.J. Steinhardt, J. Toner, Phys. Rev. Lett. 54, 1520 (1985)CrossRefADSGoogle Scholar
  22. 22.
    J.E.S. Socolar, T.C. Lubensky, P.J. Steinhardt, Phys. Rev. B 34, 3345 (1986)CrossRefADSGoogle Scholar
  23. 23.
    C.L. Henley, M. de Boissieu, W. Steurer, Philos. Mag. 86, 1131 (2006)CrossRefADSGoogle Scholar
  24. 24.
    B. Freedman, R. Lifshitz, J.W. Fleischer, M. Segev, Nature 440, 1166 (2006)CrossRefADSGoogle Scholar
  25. 25.
    B. Freedman, R. Lifshitz, J.W. Fleischer, M. Segev, Nat. Mater. 6, 776 (2007)CrossRefADSGoogle Scholar
  26. 26.
    S.P. Gorkhali, J. Qi, G.P. Crawford, J. Opt. Soc. Am. B 23, 149 (2005)CrossRefADSGoogle Scholar
  27. 27.
    B.V. Derjaguin, L. Landau, Acta Physicochimica (USSR) 14, 633 (1941)Google Scholar
  28. 28.
    E.J. Verwey, J.T.G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948)Google Scholar
  29. 29.
    W. Strepp, S. Sengupta, P. Nielaba, Phys. Rev. E 66, 056109 (2002)CrossRefADSGoogle Scholar
  30. 30.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)CrossRefADSGoogle Scholar
  31. 31.
    B. Grünbaum, G.C. Shepard, Tilings and Patterns (W.H. Freeman, New York, 1987)Google Scholar
  32. 32.
    D.V. Talapin, E.V. Shevchenko, M.I. Bodnarchuk, X. Ye, J. Chen, C.B. Murray, Nature 461, 964 (2009)CrossRefADSGoogle Scholar
  33. 33.
    A. Patrykiejew, S. Sokołowski, Phys. Rev. Lett. 99, 156101 (2007)CrossRefADSGoogle Scholar
  34. 34.
    M. Schmiedeberg, H. Stark, Phys. Rev. Lett. 100, 019601 (2008)CrossRefADSGoogle Scholar
  35. 35.
    A. Patrykiejew, S. Sokołowski, Phys. Rev. Lett. 100, 019602 (2008)CrossRefADSGoogle Scholar
  36. 36.
    W. Rzysko, A. Patrykiejew, S. Sokołowski, J. Phys.: Condens. Matter 20, 494226 (2008)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Schmiedeberg
    • 1
  • J. Mikhael
    • 2
  • S. Rausch
    • 2
  • J. Roth
    • 3
  • L. Helden
    • 2
  • C. Bechinger
    • 2
    • 4
  • H. Stark
    • 5
  1. 1.Department of Physics and AstronomyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.2. Physikalisches InstitutUniversität StuttgartStuttgartGermany
  3. 3.Institut für Theoretische und Angewandte PhysikUniversität StuttgartStuttgartGermany
  4. 4.Max-Planck-Institut für MetallforschungStuttgartGermany
  5. 5.Institut für Theoretische PhysikTechnische Universität BerlinBerlinGermany

Personalised recommendations