Advertisement

The European Physical Journal E

, Volume 31, Issue 4, pp 383–392 | Cite as

Polymer-decorated tethered membranes under good- and poor-solvent conditions

  • M. WernerEmail author
  • J. -U. Sommer
Regular Article

Abstract

We study tethered membranes grafted by polymer chains on one side. Mean-field and scaling arguments predicting a spontaneous curvature are compared to the results of lattice-based Monte Carlo simulations using the Bond Fluctuation Model, which are carried out for various grafting densities and chain lengths. We show that already slightly overlapping chains bend the membrane significantly. This proves the entropic origin for the bending stiffness, which is of order kT . To understand the membrane curvature under conditions of very small bending stiffness we apply a geometrical model which takes into account the state of chains at the overlap threshold. Applying a thermal solvent model for the grafted chains, we demonstrate that the bending direction of the membrane can be triggered by variation of the solvent quality. This indicates that polymer-decorated membranes may serve as switchable nanoscale devices.

Keywords

Polymer Chain Polymer Brush Monte Carlo Step Membrane Curvature Solvent Quality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Eck, A. Küller, M. Grunze, B. Völkel, A. Gölzhäuser, Adv. Mater. 17, 2583 (2005)CrossRefGoogle Scholar
  2. 2.
    Y. Kantor, M. Kardar, D.R. Nelson, Phys. Rev. Lett. 57, 791 (1986)CrossRefADSGoogle Scholar
  3. 3.
    Y. Kantor, K. Kremer, Phys. Rev. E 48, 2490 (1993)CrossRefADSGoogle Scholar
  4. 4.
    F.F. Abraham, D.R. Nelson, J. Phys. (Paris) 51, 2653 (1990)Google Scholar
  5. 5.
    J.A. Aronovitz, T.C. Lubensky, Phys. Rev. Lett. 60, 2634 (1988)CrossRefADSGoogle Scholar
  6. 6.
    M. Plischke, D. Boal, Phys. Rev. A 38, 4943 (1988)CrossRefADSGoogle Scholar
  7. 7.
    D. Boal, E. Levinson, D. Liu, M. Plischke, Phys. Rev. A 40, 3292 (1989)CrossRefADSGoogle Scholar
  8. 8.
    F.F. Abraham, W.E. Rudge, M. Plischke, Phys. Rev. Lett. 62, 1757 (1989)CrossRefADSGoogle Scholar
  9. 9.
    J.-S. Ho, A. Baumgärtner, Phys. Rev. Lett. 63, 1324 (1989)CrossRefADSGoogle Scholar
  10. 10.
    M. Werner, Diploma Thesis, Monte Carlo Simulation of the static and dynamic properties of polymer membranes (English translation) (2009)Google Scholar
  11. 11.
    F. David, K.J. Wiese, Phys. Rev. Lett. 76, 4564 (1996)CrossRefADSGoogle Scholar
  12. 12.
    R. Cantor, Macromolecules 14, 1186 (1981)CrossRefADSGoogle Scholar
  13. 13.
    S.T. Milner, T.A. Witten, J. Phys. (Paris) 49, 1951 (1988)Google Scholar
  14. 14.
    P.-G. de Gennes, J. Phys. Chem. 94, 8407 (1990)CrossRefGoogle Scholar
  15. 15.
    J.T. Brooks, C.M. Marques, M.E. Cates, J. Phys. II 1, 673 (1991)CrossRefGoogle Scholar
  16. 16.
    R. Lipowsky, Europhys. Lett. 30, 197 (1995)CrossRefADSGoogle Scholar
  17. 17.
    C. Hiergeist, R. Lipowsky, J. Phys. II 6, 1465 (1996)CrossRefGoogle Scholar
  18. 18.
    R. Lipowsky, Colloids Surf. A 128, 255 (1997)CrossRefGoogle Scholar
  19. 19.
    R. Lipowsky, H.-G. Döbereiner, C. Hiergeist, V. Indrani, Physica A 249, 536 (1998)CrossRefGoogle Scholar
  20. 20.
    M. Breidenich, R.R. Netz, R. Lipowsky, Europhys. Lett. 49, 431 (2000)CrossRefADSGoogle Scholar
  21. 21.
    Y.W. Kim, W. Sung, Phys. Rev. E 63, 041910 (2001)CrossRefADSGoogle Scholar
  22. 22.
    R. Lipowsky, J. Bio. Phys. 28, 195 (2002)CrossRefGoogle Scholar
  23. 23.
    T. Auth, G. Gompper, Phys. Rev. E 68, 051801 (2003)CrossRefADSGoogle Scholar
  24. 24.
    M. Laradji, J. Chem. Phys. 121, 1591 (2004)CrossRefADSGoogle Scholar
  25. 25.
    T. Auth, G. Gompper, Phys. Rev. E 72, 031904 (2005)CrossRefADSGoogle Scholar
  26. 26.
    M. Birshtein, P.A. Iakovlev, V.M. Amoskov, F.A.M. Leermakers, E.B. Zhulina, O.V. Borisov, Macromolecules 41, 478 (2008)CrossRefADSGoogle Scholar
  27. 27.
    M. Daoud, J.P. Cotton, J. Phys. (Paris) 43, 531 (1982)Google Scholar
  28. 28.
    R. Joannic, L. Auvray, D.D. Lasic, Phys. Rev. Lett. 78, 3402 (1997)CrossRefADSGoogle Scholar
  29. 29.
    J.H. Fendler, P. Tundo, Acc. Chem. Res. 17, 3 (1984)CrossRefGoogle Scholar
  30. 30.
    A. Stamouli, E. Pelletier, V. Koutsos, E. van der Vegte, G. Hadziioannou, Langmuir 12, 3221 (1996)CrossRefGoogle Scholar
  31. 31.
    E. Evans, W. Rawicz, Phys. Rev. Lett. 79, 2379 (1997)CrossRefADSGoogle Scholar
  32. 32.
    H.-G. Döbereiner, W. Lehmann, A. Goedel, O. Selchow, R. Lipowsky, Mater. Sci. Cell 489, 101 (1998)Google Scholar
  33. 33.
    I. Tsafrir, D. Sagi, T. Arzi, M.-A. Guedeau-Boudeville, V. Frette, D. Kandel, J. Stavans, Phys. Rev. Lett. 86, 1138 (2001)CrossRefADSGoogle Scholar
  34. 34.
    V. Nikolov, R. Lipowsky, R. Dimova, Biophys. J. 92, 4356 (2007)CrossRefADSGoogle Scholar
  35. 35.
    M.J. Bowick, A. Travesset, Phys. Rep. 344, 255 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  36. 36.
    I. Carmesin, K. Kremer, Macromolecules 21, 2819 (1988)CrossRefADSGoogle Scholar
  37. 37.
    L.D. Landau, E.M. Lifschitz, Elastizitätstheorie (Akademie Verlag GmbH, Berlin, 1991) (English translation: Theory of Elasticity)Google Scholar
  38. 38.
    W. Helfrich, Z. Naturforsch. 28c, 693 (1973)Google Scholar
  39. 39.
    P.-G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, New York, 1991)Google Scholar
  40. 40.
    H.P. Deutsch, K. Binder, J. Chem. Phys. 94, 2294 (1991)CrossRefADSGoogle Scholar
  41. 41.
    H.L. Trautenberg, T. Hölzl, D. Göritz, Comput. Theor. Polym. Sci. 6, 135 (1996)Google Scholar
  42. 42.
    C. Hagn, M. Wittkop, S. Kreitmeier, H.L. Trautenberg, T. Hölzl, D. Göritz, Polymer Gels Networks 5, 327 (1997)CrossRefGoogle Scholar
  43. 43.
    J.-U. Sommer, M. Schulz, H.L. Trautenberg, J. Chem. Phys. 98, 7515 (1993)CrossRefADSGoogle Scholar
  44. 44.
    J.-U. Sommer, T.A. Vilgis, G. Heinrich, J. Chem. Phys. 100, 9181 (1994)CrossRefADSGoogle Scholar
  45. 45.
    S. Lay, J.-U. Sommer, A. Blumen, J. Chem. Phys. 113, 11355 (2000)CrossRefADSGoogle Scholar
  46. 46.
    R. Descas, J.-U. Sommer, A. Blumen, J. Chem. Phys. 125, 214702 (2006)CrossRefADSGoogle Scholar
  47. 47.
    J. Klos, J.-U. Sommer, Macromolecules 42, 4878 (2009)CrossRefGoogle Scholar
  48. 48.
    A. Hoffmann, J.-U. Sommer, A. Blumen, J. Chem. Phys. 106, 6709 (1997)CrossRefADSGoogle Scholar
  49. 49.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)CrossRefADSGoogle Scholar
  50. 50.
    D.R.M. Williams, J. Phys. II 3, 1313 (1993)CrossRefGoogle Scholar
  51. 51.
    S.K. Pattanayek, T.T. Pham, G.G. Pereira, J. Chem. Phys. 122, 214908 (2005)CrossRefADSGoogle Scholar
  52. 52.
    G.S. Grest, M. Murat, Macromolecules 26, 3108 (1993)CrossRefADSGoogle Scholar
  53. 53.
    T. Bickel, C.M. Marques, J. Nanosci. Nanotechnol. 6, 2386 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Leibniz-Institut für Polymerforschung DresdenDresdenGermany
  2. 2.Institute of Theoretical PhysicsTechnische Universität DresdenDresdenGermany

Personalised recommendations