The European Physical Journal E

, Volume 31, Issue 3, pp 239–252 | Cite as

Ellipsometry measurements of glass transition breadth in bulk films of random, block, and gradient copolymers

  • M. M. Mok
  • J. Kim
  • S. R. Marrou
  • J. M. TorkelsonEmail author
Regular Article


Bulk films of random, block and gradient copolymer systems were studied using ellipsometry to demonstrate the applicability of the numerical differentiation technique pioneered by Kawana and Jones for studying the glass transition temperature (T g) behavior and thermal expansivities of copolymers possessing different architectures and different levels of nanoheterogeneity. In a series of styrene/n -butyl methacrylate (S/nBMA) random copolymers, T g breadths were observed to increase from ∼ 17° C in styrene-rich cases to almost 30° C in nBMA-rich cases, reflecting previous observations of significant nanoheterogeneity in PnBMA homopolymers. The derivative technique also revealed for the first time a substantial increase in glassy-state expansivity with increasing nBMA content in S/nBMA random copolymers, from 1.4×10-4 K-1 in PS to 3.5×10-4 K-1 in PnBMA. The first characterization of block copolymer T g ’s and T g breadths by ellipsometry is given, examining the impact of nanophase-segregated copolymer structure on ellipsometric measurements of glass transition. The results show that, while the technique is effective in detecting the two T g ’s expected in certain block copolymer systems, the details of the glass transition can become suppressed in ellipsometry measurements of a rubbery minor phase under conditions where the matrix is glassy; meanwhile, both transitions are easily discernible by differential scanning calorimetry. Finally, broad glass transition regions were measured in gradient copolymers, yielding in some cases extraordinary T g breadths of 69- 71° C , factors of 4-5 larger than the T g breadths of related homopolymers and random copolymers. Surprisingly, one gradient copolymer demonstrated a slightly narrower T g breadth than the S/nBMA random copolymers with the highest nBMA content. This highlights the fact that nanoheterogeneity relevant to the glass transition response in selected statistical copolymers can be comparable to or exceed that observed in moderately phase-segregated gradient copolymers.


Glass Transition Block Copolymer Random Copolymer Copolymer System Styrene Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G.E. Jellison jr., F.A. Modine, in Handbook of Ellipso\-metry, edited by H.G. Tompkins, E.A. Irene (William Andrew, New York, 2005)Google Scholar
  2. 2.
    G. Beaucage, R. Composto, R.S. Stein, J. Polym. Sci. Part B: Polym. Phys. 31, 319 (1993)CrossRefADSGoogle Scholar
  3. 3.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994)CrossRefADSGoogle Scholar
  4. 4.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994)CrossRefGoogle Scholar
  5. 5.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997)CrossRefADSGoogle Scholar
  6. 6.
    J.A. Forrest, J. Mattsson, Phys. Rev. E 61, R53 (2000)CrossRefADSGoogle Scholar
  7. 7.
    O.K.C. Tsui, T.P. Russell, C.J. Hawker, Macromolecules 34, 5535 (2001)CrossRefADSGoogle Scholar
  8. 8.
    D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W.L. Wu, Macromolecules 34, 5627 (2001)CrossRefADSGoogle Scholar
  9. 9.
    S. Kawana, R.A.L. Jones, Phys. Rev. E 63, 021501 (2001)CrossRefADSGoogle Scholar
  10. 10.
    R.S. Tate, D.S. Fryer, S. Pasqualini, M.F. Montague, J.J. de Pablo, P.F. Nealey, J. Chem. Phys. 115, 9982 (2001)CrossRefADSGoogle Scholar
  11. 11.
    Y. Grohens, L. Hamon, G. Reiter, A. Soldera, Y. Holl, Eur. Phys. J. E 8, 217 (2002)CrossRefGoogle Scholar
  12. 12.
    J.S. Sharp, J.A. Forrest, Phys. Rev. Lett. 91, 235701 (2003)CrossRefADSGoogle Scholar
  13. 13.
    Y. Grohens, R.M. Papaleo, L. Hamon, Eur. Phys. J. E 12, S81 (2003)CrossRefGoogle Scholar
  14. 14.
    C.H. Park, J.H. Kim, M. Ree, B.H. Sohn, J.C. Jung, W.C. Zin, Polymer 45, 4507 (2004)CrossRefGoogle Scholar
  15. 15.
    Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, 025701 (2005)CrossRefADSGoogle Scholar
  16. 16.
    R. Seemann, S. Herminghaus, C. Neto, S. Schlagowski, D. Podzimek, R. Konrad, H. Mantz, K. Jacobs, J. Phys.: Condens. Matter 17, S267 (2005)CrossRefADSGoogle Scholar
  17. 17.
    C.B. Roth, A. Pound, S.W. Kamp, C.A. Murray, J.R. Dutcher, Eur. Phys. J. E 20, 441 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Campoy-Quiles, M. Sims, P.G. Etchegoin, D.D.C. Bradley, Macromolecules 39, 7673 (2006)CrossRefADSGoogle Scholar
  19. 19.
    C.G. Campbell, B.D. Vogt, Polymer 48, 7169 (2007)CrossRefGoogle Scholar
  20. 20.
    H. Yang, J.S. Sharp, Macromolecules 41, 4811 (2008)CrossRefADSGoogle Scholar
  21. 21.
    M.Y. Efremov, A.V. Kiyanova, P.F. Nealey, Macromolecules 41, 5978 (2008)CrossRefADSGoogle Scholar
  22. 22.
    X.X. Li, B.D. Vogt, Macromolecules 41, 9306 (2008)CrossRefADSGoogle Scholar
  23. 23.
    A.N. Raegen, M.V. Massa, J.A. Forrest, K. Dalnoki-Veress, Eur. Phys. J. E 27, 375 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Kim, S.A. Hewlett, C.B. Roth, J.M. Torkelson, Eur. Phys. J. E. 30, 83 (2009)CrossRefGoogle Scholar
  25. 25.
    J.Q. Pham, P.F. Green, Macromolecules 36, 1665 (2003)CrossRefADSGoogle Scholar
  26. 26.
    D.B. Hall, P. Underhill, J.M. Torkelson, Polym. Eng. Sci. 38, 2039 (1998)CrossRefGoogle Scholar
  27. 27.
    S. Kawana, R.A.L. Jones, Eur. Phys. J. E 10, 223 (2003)CrossRefGoogle Scholar
  28. 28.
    C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003)CrossRefADSGoogle Scholar
  29. 29.
    J.Q. Pham, C.A. Mitchell, J.L. Bahr, J.M. Tour, R. Krishnamoorti, P.F. Green, J. Polym. Sci. Part B: Polym. Phys. 41, 3339 (2003)CrossRefADSGoogle Scholar
  30. 30.
    P. Rittigstein, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 44, 2935 (2006)CrossRefADSGoogle Scholar
  31. 31.
    P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Nat. Mater. 6, 278 (2007)CrossRefADSGoogle Scholar
  32. 32.
    R. Greiner, F.R. Schwarzl, Rheol. Acta 23, 378 (1984)CrossRefGoogle Scholar
  33. 33.
    D.W. Van Krevelen, K. te Nijenhuis, Properties of Polymers: Their Correlation with Chemical StructureGoogle Scholar
  34. 34.
    M. Campoy-Quiles, P.G. Etchegoin, D.D.C. Bradley, Synth. Met. 155, 279 (2005)CrossRefGoogle Scholar
  35. 35.
    S. Kahle, J. Korus, E. Hempel, R. Unger, S. Horing, K. Schroter, E. Donth, Macromolecules 30, 7214 (1997)CrossRefADSGoogle Scholar
  36. 36.
    G.P. Simon, C.L. Beatty, S.R. Andrews, S. Shinton, G. Williams, Polymer 39, 5929 (1998)CrossRefGoogle Scholar
  37. 37.
    G.O.R.A. van Ekenstein, R. Meyboom, G. ten Brinke, O. Ikkala, Macromolecules 33, 3752 (2000)CrossRefADSGoogle Scholar
  38. 38.
    T. Pakula, K. Matyjaszewski, Macromol. Theor. Simul. 5, 987 (1996)CrossRefGoogle Scholar
  39. 39.
    K. Matyjaszewski, M.J. Ziegler, S.V. Arehart, D. Greszta, T. Pakula, J. Phys. Org. Chem. 13, 775 (2000)CrossRefGoogle Scholar
  40. 40.
    M.D. Lefebvre, M. Olvera de la Cruz, K.R. Shull, Macromolecules 37, 1118 (2004)CrossRefADSGoogle Scholar
  41. 41.
    M.K. Gray, H.Y. Zhou, S.T. Nguyen, J.M. Torkelson, Macromolecules 37, 5586 (2004)CrossRefADSGoogle Scholar
  42. 42.
    J. Kim, M.K. Gray, H.Y. Zhou, S.T. Nguyen, J.M. Torkelson, Macromolecules 38, 1037 (2005)CrossRefADSGoogle Scholar
  43. 43.
    J. Kim, M.M. Mok, R.W. Sandoval, D.J. Woo, J.M. Torkelson, Macromolecules 39, 6152 (2006)CrossRefADSGoogle Scholar
  44. 44.
    C.L.H. Wong, J. Kim, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 45, 2842 (2007)CrossRefADSGoogle Scholar
  45. 45.
    M.M. Mok, J. Kim, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 46, 48 (2008)CrossRefADSGoogle Scholar
  46. 46.
    M.M. Mok, S. Pujari, W.R. Burghardt, C.M. Dettmer, S.T. Nguyen, C.J. Ellison, J.M. Torkelson, Macromolecules 41, 5818 (2008)CrossRefADSGoogle Scholar
  47. 47.
    M.M. Mok, J. Kim, C.L.H. Wong, S.R. Marrou, D.J. Woo, C.M. Dettmer, S.T. Nguyen, C.J. Ellison, K.R. Shull, J.M. Torkelson, Macromolecules 42, 7863 (2009)CrossRefADSGoogle Scholar
  48. 48.
    K. Karaky, E. Pe, Soft Matter 2, 770 (2006)CrossRefGoogle Scholar
  49. 49.
    K. Karaky, L. Billon, C. Pouchan, J. Desbri\`e, Macromolecules 40, 458 (2007)CrossRefADSGoogle Scholar
  50. 50.
    S. Jouenne, J.A. Gonza, Macromolecules 40, 2432 (2007)CrossRefADSGoogle Scholar
  51. 51.
    Y. Fu, M.F. Cunningham, R.A. Hutchinson, Macromol. Symp. 259, 151 (2007)CrossRefGoogle Scholar
  52. 52.
    R. Paris, J.L. De la Fuente, J. Polym. Sci. Part B: Polym. Phys. 45, 1845 (2007)CrossRefADSGoogle Scholar
  53. 53.
    X.Y. Sun, Y.W. Luo, R. Wang, B.G. Li, B. Liu, S.P. Zhu, Macromolecules 40, 849 (2007)CrossRefADSGoogle Scholar
  54. 54.
    K. Karaky, G. Clisson, G. Reiter, L. Billon, Macromol. Chem. Phys. 209, 715 (2008)CrossRefGoogle Scholar
  55. 55.
    K.I. Seno, I. Tsujimoto, S. Kanaoka, S. Aoshima, J. Polym. Sci. Part A: Polym. Chem. 46, 6444 (2008)CrossRefADSGoogle Scholar
  56. 56.
    W. Jakubowski, A. Juhari, A. Best, K. Koynov, T. Pakula, K. Matyjaszewski, Polymer 49, 1567 (2008)CrossRefGoogle Scholar
  57. 57.
    R. Jiang, Q.H. Jin, B.H. Li, D.T. Ding, R.A. Wickham, A.C. Shi, Macromolecules 41, 5457 (2008)CrossRefADSGoogle Scholar
  58. 58.
    J. Nicolas, A.V. Ruzette, C. Farcet, P. Ge, Macromolecules 48, 7029 (2007)Google Scholar
  59. 59.
    D. Rana, K. Bag, S.N. Bhattacharyya, B.M. Mandal, J. Polym. Sci. Part B: Polym. Phys. 38, 369 (2000)CrossRefADSGoogle Scholar
  60. 60.
    B.D. Edgecombe, J.A. Stein, J.M.J. Frechet, Z.H. Xu, E.J. Kramer, Macromolecules 31, 1292 (1998)CrossRefADSGoogle Scholar
  61. 61.
    C.B. Roth, K.L. McNerny, W.F. Jager, J.M. Torkelson, Macromolecules 40, 2568 (2007)CrossRefADSGoogle Scholar
  62. 62.
    R.D. Priestley, M.K. Mundra, N.J. Barnett, L.J. Broadbelt, J.M. Torkelson, Aust. J. Chem. 60, 765 (2007)CrossRefGoogle Scholar
  63. 63.
    J. Brandrup, E.H. Immergut, Polymer Handbook, 3rd edition (J. Wiley, New York, 1989)Google Scholar
  64. 64.
    S. Wi, N. Senthilkumar, S.W. Rhee, J. Mater. Sci.: Mater. Electron. 19, 45 (2008)CrossRefGoogle Scholar
  65. 65.
    E. Penzel, J. Rieger, H.A. Schneider, Polymer 38, 325 (1997)CrossRefGoogle Scholar
  66. 66.
    M. Beiner, K. Schröter, E. Hempel, S. Reissig, E. Donth, Macromolecules 32, 6278 (1999)CrossRefADSGoogle Scholar
  67. 67.
    J.J. Fitzgerald, T.D. Binga, L.J. Sorriero, J.M. O’Reilly, Macromolecules 28, 7401 (1995)CrossRefADSGoogle Scholar
  68. 68.
    K.J. Zhu, T.K. Kwei, E.M. Pearce, J. Appl. Polym. Sci. 37, 573 (1989)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. M. Mok
    • 1
  • J. Kim
    • 2
  • S. R. Marrou
    • 2
  • J. M. Torkelson
    • 1
    • 2
    Email author
  1. 1.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations