The European Physical Journal E

, Volume 31, Issue 1, pp 59–67 | Cite as

Symmetry of electrostatic interaction between pyrophosphate DNA molecules

  • V. L. Golo
  • E. I. Kats
  • S. A. Kuznetsova
  • Yu. S. Volkov
Regular Article


We study chiral electrostatic interaction between artificial ideal homopolymer DNA-like molecules in which a number of phosphate groups of the sugar-phosphate backbone are exchanged for the pyrophosphate ones. We employ a model in which the DNA is considered as a one-dimensional lattice of dipoles and charges corresponding to base pairs and (pyro)phosphate groups, respectively. The interaction between molecules of the DNA is described by a pair potential U of electrostatic forces between the two sets of dipoles and charges belonging to respective lattices describing the molecules. Minima of the potential U indicate orientational ordering of the molecules and thus liquid crystalline phases of the DNA. We use numerical methods for finding the set of minima in conjunction with symmetries verified by the potential U . The symmetries form a non-commutative group of 8th order, S . Using the group S we suggest a classification of liquid crystalline phases of the DNA, which allows several cholesteric phases, that is polymorphism. Pyrophosphate forms of the DNA could clarify the role played by charges in their liquid crystalline phases, and open experimental research, important for nano-technological and bio-medical applications.


Normal Subgroup Pyrophosphate Twist Angle Liquid Crystalline Phasis Stationary Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Robinson, Tetrahedron 13, 219 (1961)CrossRefGoogle Scholar
  2. 2.
    F. Livolant, J. Phys. (Paris) 47, 1605 (1986)Google Scholar
  3. 3.
    F. Livolant, Biophys. J. 65, 56 (1993)CrossRefADSGoogle Scholar
  4. 4.
    A.A. Purmal, V.L. Druca, Z.A. Shabarova, Bio-Org. Chem. 10, 394 (1984) (in Russian)Google Scholar
  5. 5.
    S.A. Kuznetsova, C. Clusel, E. Ugarte, I. Elias, M. Vasseur, M. Blumenfeld, Z.A. Shabarova, Nucl. Acids Res. 24, 4783 (1996)CrossRefGoogle Scholar
  6. 6.
    G.Ya. Sheflyan, E.A. Kubareva, S.A. Kuznetsova, A.S. Karyagina, I.I. Nikol'skaya, E.S. Gromova, Z.A. Shabarova, FEBS Lett. 390, 307 (1996)CrossRefGoogle Scholar
  7. 7.
    A.A. Purmal, Z.A. Shabarova, R.I. Gumport, Nucl. Acids Res. 20, 3713 (1992)CrossRefGoogle Scholar
  8. 8.
    M.V. Rogacheva, A.V. Bochenkova, S.A. Kuznetsova, M.K. Saparbaev, A.V. Nemukhin, J. Phys. Chem. 111, 432 (2007)Google Scholar
  9. 9.
    L. Onsager, Ann. Acad. Sci. NY 51, 621 (1999)Google Scholar
  10. 10.
    A.A. Kornyshev, S. Leikin, J. Chem. Phys. 107, 3656 (1997)CrossRefADSGoogle Scholar
  11. 11.
    A.A. Kornyshev, S. Leikin, Phys. Rev. Lett. 84, 2537 (2000)CrossRefADSGoogle Scholar
  12. 12.
    A.A. Kornyshev, D.J. Lee, S. Leikin, A. Wynveen, S.B. Zimmerman, Phys. Rev. Lett. 95, 148102 (2005)CrossRefADSGoogle Scholar
  13. 13.
    A.A. Kornyshev, S. Leikin, Proc. Natl. Acad. Sci. U.S.A. 95, 13579 (1998)CrossRefADSGoogle Scholar
  14. 14.
    Y.H. Kim, J. Phys. (Paris) 43, 559 (1982)Google Scholar
  15. 15.
    B. Samor, M. Osipov, I. Domini, A. Bartolini, Int. J. Macromol. 15, 353 (1993)CrossRefGoogle Scholar
  16. 16.
    V.L. Golo, E.I. Kats, I.P. Kikot', JETP Lett. 84, 275 (2006)CrossRefADSGoogle Scholar
  17. 17.
    A.G. Cherstvy, J. Chem. Phys. B 112, 12585 (2008)CrossRefGoogle Scholar
  18. 18.
    V.L. Golo, E.I. Kats, Yu.S. Volkov, JETP Lett. 86, 278 (2007)CrossRefADSGoogle Scholar
  19. 19.
    M.A. El Hassan, C.R. Calladine, J. Mol. Biol. 251, 648 (1995)CrossRefGoogle Scholar
  20. 20.
    A.A. Kornyshev, D.J. Lee, S. Leikin, A. Wynveen, Rev. Mod. Phys. 79, 943 (2007)CrossRefMathSciNetADSGoogle Scholar
  21. 21.
    G. Zanchetta, M. Nakata, M. Buscagilia, N.A. Clark, T. Belini, J. Phys.: Condens. Matter 20, 494214 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Nakata, G. Zanchetta, B.D. Chapman, C.D. Jones, J.O. Cross, R. Pindak, T. Bellini, N.A. Clark, Science 318, 1276 (2007)CrossRefADSGoogle Scholar
  23. 23.
    F. Livolant, F.A. Leforestier, Progr. Polym. Sci. 21, 1115 (1996)CrossRefGoogle Scholar
  24. 24.
    R. Podgornik, H.H. Strey, V.A. Parsegian, Curr. Opin. Colloid Interface Sci. 3, 534 (1998)CrossRefGoogle Scholar
  25. 25.
    T.M. Alam, G. Drobny, J. Chem. Phys. 92, 6840 (1990)CrossRefADSGoogle Scholar
  26. 26.
    C.B. Stanley, H. Hong, H.H. Strey, Biophys. J. 89, 2552 (2005)CrossRefGoogle Scholar
  27. 27.
    E. Allahyarov, H. Lowen, Phys. Rev. E 62, 5542 (2000)CrossRefADSGoogle Scholar
  28. 28.
    E. Allahyarov, H. Lowen, G. Gompper, Europhys. Lett. 68, 894 (2004)CrossRefADSGoogle Scholar
  29. 29.
    E. Allahyarov, G. Gompper, H. Lowen, Phys. Rev. E 69, 041904 (2004)CrossRefADSGoogle Scholar
  30. 30.
    E. Allahyarov, G. Gompper, H. Lowen, J. Phys.: Condens. Matter 17, S1827 (2005)CrossRefADSGoogle Scholar
  31. 31.
    O. Punkkinen, A. Naji, R. Podgornik, I. Vattulainen, P.L. Hansen, EPL 82, 48001 (2008)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • V. L. Golo
    • 1
  • E. I. Kats
    • 2
    • 3
  • S. A. Kuznetsova
    • 4
  • Yu. S. Volkov
    • 1
  1. 1.Department of Mechanics and Mathematicsthe Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute Laue-Langevin GrenobleGrenobleFrance
  3. 3.L.D. Landau Institute for Theoretical PhysicsMoscowRussia
  4. 4.Department of Chemistrythe Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations