Advertisement

Towards a structural characterization of charge-driven polymer micelles

  • I. K. VoetsEmail author
  • R. de Vries
  • R. Fokkink
  • J. Sprakel
  • R. P. May
  • A. de Keizer
  • M. A. Cohen Stuart
Regular Article

Abstract

Light scattering and small-angle neutron scattering experiments were performed on comicelles of several combinations of oppositely charged (block co)polymers in aqueous solutions. Fundamental differences between the internal structure of this novel type of micelle --termed complex coacervate core micelle (C3Ms), polyion complex (PIC) micelle, block ionomer complex (BIC), or interpolyelectrolyte complex (IPEC)-- and its traditional counterpart, i.e., a micelle formed via self-assembly of polymeric amphiphiles, give rise to differences in scaling behaviour. Indeed, the observed dependencies of micellar size and aggregation number on corona block length, N corona , are inconsistent with scaling predictions developed for polymeric micelles in the star-like and crew-cut regime. Generic C3M characteristics, such as the relatively high core solvent fraction, the low core-corona interfacial tension, and the high solubility of the coronal chains, are causing the deviations. A recently proposed scaling theory for the cross-over regime, as well as a primitive first-order self-consistent field (SCF) theory for obligatory co-assembly, follow our data more closely.

Keywords

Diblock Copolymer Aggregation Number Critical Micellisation Concentration DMAEMA Micellar Core 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Supplementary material

10189_2009_9416_MOESM1_ESM.pdf (78 kb)
Supplementary material, approximately 340 KB.

References

  1. 1.
    H.G. Bungenberg de Jong, H.R. Kruyt, Proc. Koninkl. Akad. Wetensch. 32, 849 (1929).Google Scholar
  2. 2.
    A.V. Kabanov et al., Macromolecules 29, 6797 (1996).CrossRefADSGoogle Scholar
  3. 3.
    A. Harada, K. Kataoka, Macromolecules 28, 5294 (1995).CrossRefADSGoogle Scholar
  4. 4.
    M.A. Cohen Stuart, N.A.M. Besseling, R.G. Fokkink, Langmuir 14, 6846 (1998).CrossRefGoogle Scholar
  5. 5.
    J.F. Gohy, S.K. Varshney, R. Jerome, Macromolecules 34, 3361 (2001).CrossRefADSGoogle Scholar
  6. 6.
    I.K. Voets et al., Macromolecules 40, 8476 (2007).CrossRefADSGoogle Scholar
  7. 7.
    S. van der Burgh, A. de Keizer, M.A. Cohen Stuart, Langmuir 20, 1073 (2004).CrossRefGoogle Scholar
  8. 8.
    P.E. Millard et al., in preparation (2009).Google Scholar
  9. 9.
    P. Salomaa, L.L. Schaleger, F.A. Long, J. Am. Chem. Soc. 86, 1 (1964).CrossRefGoogle Scholar
  10. 10.
    B. Hofs et al., Phys. Chem. Chem. Phys. 8, 4242 (2006).CrossRefGoogle Scholar
  11. 11.
    I.K. Voets et al., Angew. Chem. Int. Ed. 45, 6673 (2006).CrossRefGoogle Scholar
  12. 12.
    I.K. Voets et al., Soft Matter 5, 999 (2009).CrossRefGoogle Scholar
  13. 13.
    I.K. Voets et al., Langmuir 24, 12221 (2008).CrossRefGoogle Scholar
  14. 14.
    I.K. Voets, A. de Keizer, M.A. Cohen Stuart, Adv. Colloid Interface Sci. 147–148, 300 (2009).CrossRefGoogle Scholar
  15. 15.
    E.Y. Kramarenko, A.R. Khokhlov, P. Reineker, J. Chem. Phys. 125, 194902 (2006).CrossRefADSGoogle Scholar
  16. 16.
    A. Halperin, Macromolecules 20, 2943 (1987).CrossRefADSGoogle Scholar
  17. 17.
    J. Noolandi, K.M. Hong, Macromolecules 16, 1443 (1983).CrossRefADSGoogle Scholar
  18. 18.
    R. Nagarajan, K. Ganesh, J. Chem. Phys. 90, 5843 (1989).CrossRefADSGoogle Scholar
  19. 19.
    N. Dan, M. Tirrell, Macromolecules 26, 4310 (1993).CrossRefADSGoogle Scholar
  20. 20.
    E.B. Zhulina et al., Macromolecules 38, 5330 (2005).CrossRefADSGoogle Scholar
  21. 21.
    I.K. Voets, F.A.M. Leermakers, Phys. Rev. E 78, 061801 (2008).CrossRefADSGoogle Scholar
  22. 22.
    I. Larue et al., Macromolecules 41, 6555 (2008).CrossRefADSGoogle Scholar
  23. 23.
    P. Molyneux, Water-Soluble Synthetic Polymers: Properties and Behavior (CRC Press, 1982).Google Scholar
  24. 24.
    J. Brandrup, E.H. Immergut (Editors), Polymer Handbook, 3rd edition (John Wiley & Sons, 1989).Google Scholar
  25. 25.
    N.G. Hoogeveen, M.A. Cohen Stuart, G.J. Fleer, J. Colloid Interface Sci. 182, 133 (1996).CrossRefGoogle Scholar
  26. 26.
    A.S. Lee et al., Macromolecules 32, 4302 (1999).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • I. K. Voets
    • 1
    Email author
  • R. de Vries
    • 1
  • R. Fokkink
    • 1
  • J. Sprakel
    • 1
  • R. P. May
    • 2
  • A. de Keizer
    • 1
  • M. A. Cohen Stuart
    • 1
  1. 1.Laboratory of Physical Chemistry and Colloid ScienceWageningen UniversityHB WageningenThe Netherlands
  2. 2.Institut Max von Laue-Paul LangevinGrenoble Cedex 9France

Personalised recommendations