Criticality in a non-equilibrium, driven system: Charged colloidal rods (fd-viruses) in electric fields

Regular Article

Abstract

Experiments on suspensions of charged colloidal rods (fd-virus particles) in external electric fields are performed, which show that a non-equilibrium critical point can be identified. Several transition lines of field-induced phases and states meet at this point and it is shown that there is a length- and time-scale which diverge at the non-equilibrium critical point. The off-critical and critical behavior is characterized, with both power law and logarithmic divergencies. These experiments show that analogous features of the classical, critical divergence of correlation lengths and relaxation times in equilibrium systems are also exhibited by driven systems that are far out of equilibrium, related to phases/states that do not exist in the absence of the external field.

PACS

64.60.-i General studies of phase transitions 82.70.Dd Colloids 87.50.-a Effects of electromagnetic and acoustic fields on biological systems 

References

  1. 1.
    E.V. Ivashkevich, A.M. Povolotsky, A. Vespignani, S. Zapperi, Phys. Rev. E 60, 1239 (1999).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    C. Godrèche, J.M. Luck, J. Phys.: Condens. Matter 14, 1589 (2002).CrossRefADSGoogle Scholar
  3. 3.
    L. Környei, M. Pleimling, F. Iglói, arXiv:0710.2829vl [cond-mat.stat-mech] 15 oct. (2007).Google Scholar
  4. 4.
    M. Henkel, G.M. Schütz, J. Phys. A: Math. Gen. 37, 591 (2004).MATHCrossRefADSGoogle Scholar
  5. 5.
    V.K. Akkineni, U.C. Täuber, Phys. Rev. E 69, 036113 (2004).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    N. Goldenfeld, L.P. Kadanoff, Science 284, 87 (1999).CrossRefADSGoogle Scholar
  7. 7.
    H. Hinrichsen, Adv. Phys. 49, 815 (2000).CrossRefADSGoogle Scholar
  8. 8.
    G. Odor, Rev. Mod. Phys. 76, 663 (2004).CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    S. Lubeck, Int. J. Mod. Phys. B 18, 3977 (2004).CrossRefADSGoogle Scholar
  10. 10.
    K. Kang, J.K.G. Dhont, EPL 84, 14005 (2008).CrossRefADSGoogle Scholar
  11. 11.
    Z. Dogic, S. Fraden, Curr. Opin. Colloid Interface Sci. 11, 47 (2006).CrossRefGoogle Scholar
  12. 12.
    E. Grelet, S. Fraden, Phys. Rev. Lett. 90, 198302 (2003).CrossRefADSGoogle Scholar
  13. 13.
    J. Ray, G.S. Manning, Langmuir 10, 2450 (1994).CrossRefGoogle Scholar
  14. 14.
    J. Ray, G.S. Manning, Macromolecules 33, 2901 (2000).CrossRefADSGoogle Scholar
  15. 15.
    D. Saintillan, E. Darve, E.S.G. Shaqfeh, J. Fluid Mech. 563, 223 (2006).MATHCrossRefMathSciNetADSGoogle Scholar
  16. 16.
    J. Sambrook, E.F. Fritsch, T.Maniatis, Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York, 1989).Google Scholar
  17. 17.
    K. Zimmermann, J. Hagedorn, C.C. Heuck, M. Hinrichsen, J. Ludwig, J. Biol. Chem. 261, 1653 (1986).Google Scholar
  18. 18.
    K. Kang, A. Wilk, A. Patkowski, J.K.G. Dhont, J. Chem. Phys. 126, 214501 (2007).CrossRefADSGoogle Scholar
  19. 19.
    K. Kang, J.K.G. Dhont, to be published in Soft Matter.Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Forschungszentrum JülichInstitute für Festkörper Forschung (IFF), Weiche MaterieJülichGermany

Personalised recommendations