Adhesion and membrane tension of single vesicles and living cells using a micropipette-based technique

  • M. -J. Colbert
  • A. N. Raegen
  • C. Fradin
  • K. Dalnoki-Veress
Regular Article

Abstract

The fundamental study of the adhesion of cells to each other or to a substrate is a key research topic in cellular biophysics because cell adhesion is important to many biological processes. We report on the adhesion of a model cell, a liposome, and a living HeLa cell to a substrate measured with a novel experimental technique. The cells are held at the end of a micropipette mounted on a micromanipulator and brought into contact with a surface. The adhesion energy and membrane tension are measured directly using the deflection of the micropipette when binding or unbinding the cell from the substrate. Since the force applied on the cells is known throughout the experiment, the technique presented enables the measurement of dynamics such as changes in the adhesion, elasticity, and membrane tension with time.

PACS

87.16.D- Membranes, bilayers, and vesicles 87.17.Rt Cell adhesion and cell mechanics 87.15.La Mechanical properties 87.61.Ff Instrumentation 

References

  1. 1.
    M.M. Stevens, J.H. George, Science 310, 1135 (2005).CrossRefADSGoogle Scholar
  2. 2.
    P. Carmeliet, R.K. Jain, Nature 407, 249 (2002).CrossRefGoogle Scholar
  3. 3.
    G. Christofori, Nature 441, 444 (2006).CrossRefADSGoogle Scholar
  4. 4.
    E.A. Evans, Biophys. J. 31, 425 (1980).CrossRefADSGoogle Scholar
  5. 5.
    E.A. Evans, D. Needham, Macromolecules 21, 1822 (1988).CrossRefADSGoogle Scholar
  6. 6.
    E.A. Evans, Colloids Surf. 43, 327 (1990).CrossRefGoogle Scholar
  7. 7.
    E.A. Evans et al., Biophys. J. 59, 849 (1991).CrossRefADSGoogle Scholar
  8. 8.
    E.A. Evans et al., Biophys. J. 65, 2580 (1995).CrossRefGoogle Scholar
  9. 9.
    D.A. Simson et al., Biophys. J. 74, 2080 (1998).CrossRefADSGoogle Scholar
  10. 10.
    V. Heinrich, C. Ounkomol, Biophys. J. 93, 363 (2007).CrossRefADSGoogle Scholar
  11. 11.
    F. Brochard-Wyart, P.-G. de Gennes, C. R. Phys. 4, 281 (2003).CrossRefADSGoogle Scholar
  12. 12.
    S. Pierrat et al., Biophys. J. 87, 2855 (2004).CrossRefADSGoogle Scholar
  13. 13.
    A. Yeung et al., J. Colloid Interface Sci. 196, 113 (1997).CrossRefGoogle Scholar
  14. 14.
    G.W. Francis et al., J. Cell Sci. 87, 519 (1987).Google Scholar
  15. 15.
    D.S. Dimitrov, M.I. Angelova, Bioelectroch. Bioenerg. 19, 323 (1988).CrossRefGoogle Scholar
  16. 16.
    Y.-S. Chu et al., Phys. Rev. Lett. 94, 028102 (2005).CrossRefADSGoogle Scholar
  17. 17.
    J.J. Brey, A. Prados, Phys. Rev. E. 63, 021108 (2001).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • M. -J. Colbert
    • 1
  • A. N. Raegen
    • 1
  • C. Fradin
    • 1
  • K. Dalnoki-Veress
    • 1
  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations