Advertisement

Confinement effects on glass transition temperature, transition breadth, and expansivity: Comparison of ellipsometry and fluorescence measurements on polystyrene films

  • S. Kim
  • S. A. Hewlett
  • C. B. Roth
  • J. M. Torkelson
Regular Article

Abstract

Using ellipsometry, we characterized the nanoconfinement effect on the glass transition temperature (T gof supported polystyrene (PS) films employing two methods: the intersection of fits to the temperature (Tdependences of rubbery- and glassy-state thicknesses, and the transition mid-point between rubbery- and glassy-state expansivities. The results demonstrate a strong effect of thickness: \(\ensuremath T_{{\rm g}}({\rm bulk})-T_{{\rm g}}(23{\,\mbox{nm}})= 10 ^{\circ}\) C. The T -range needed for accurate measurement increases significantly with decreasing thickness, an effect that arises from the broadening of the transition with confinement and a region below T g where expansivity slowly decreases with decreasing T . As determined from expansivities, the T g breadth triples in going from bulk films to a 21-nm-thick film; this broadening of the transition may be a more dramatic effect of confinement than the T g reduction itself. In contrast, there is little effect of confinement on the rubbery- and glassy-state expansivities. Compared with ellipsometry, T g ’s from fluorescence agree well in bulk films but yield lower values in nanoconfined films: T g(bulk) - T g(23 nm) = 15° C via fluorescence. This small difference in the T g confinement effect reflects differences in how fluorescence and ellipsometry report “average T g ” with confinement. With decreasing nanoscale thickness, fluorescence may slightly overweight the contribution of the free-surface layer while ellipsometry may evenly weight or underweight its contribution.

PACS

64.70.P- Glass transitions of specific systems 64.70.pj Polymers 82.35.Lr Physical properties of polymers 68.60.-p Physical properties of thin films, nonelectronic 

References

  1. 1.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).CrossRefADSGoogle Scholar
  2. 2.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Faraday Discuss. 98, 219 (1994).CrossRefGoogle Scholar
  3. 3.
    J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).CrossRefGoogle Scholar
  4. 4.
    M. Alcoutlabi, G.B. McKenna, J. Phys.: Condens. Matter 17, R461 (2005).CrossRefADSGoogle Scholar
  5. 5.
    C.B. Roth, J.R. Dutcher, J. Electroanal. Chem. 584, 13 (2005).CrossRefGoogle Scholar
  6. 6.
    K.L. Ngai, J. Polym. Sci. Part B: Polym. Phys. 44, 2980 (2006).CrossRefGoogle Scholar
  7. 7.
    S. Peter, H. Meyer, J. Baschnagel, J. Polym. Sci. Part B: Polym. Phys. 44, 2951 (2006).CrossRefGoogle Scholar
  8. 8.
    S. Kawana, R.A.L. Jones, Phys. Rev. E 63, 021501 (2001).CrossRefADSGoogle Scholar
  9. 9.
    O.K.C. Tsui, H.F. Zhang, Macromolecules 34, 9139 (2001).CrossRefADSGoogle Scholar
  10. 10.
    D.S. Fryer, R.D. Peters, E.J. Kim, J.E. Tomaszewski, J.J. de Pablo, P.F. Nealey, C.C. White, W.L. Wu, Macromolecules 34, 5627 (2001).CrossRefADSGoogle Scholar
  11. 11.
    Y. Grohens, L. Hamon, G. Reiter, A. Soldera, Y. Holl, Eur. Phys. J. E 8, 217 (2002).CrossRefGoogle Scholar
  12. 12.
    Z. Fakhraai, J.A. Forrest, Phys. Rev. Lett. 95, 025701 (2005).CrossRefADSGoogle Scholar
  13. 13.
    C.H. Park, J.H. Kim, M. Ree, B.H. Sohn, J.C. Jung, W.C. Zin, Polymer 45, 4507 (2004).CrossRefGoogle Scholar
  14. 14.
    C.G. Campbell, B.D. Vogt, Polymer 48, 7169 (2007).CrossRefGoogle Scholar
  15. 15.
    A. Raegen, M. Massa, J. Forrest, K. Dalnoki-Veress, Eur. Phys. J. E 27, 375 (2008).CrossRefGoogle Scholar
  16. 16.
    K. Fukao, Y. Miyamoto, Europhys. Lett. 46, 649 (1999).CrossRefADSGoogle Scholar
  17. 17.
    K. Fukao, Y. Miyamoto, Phys. Rev. E 61, 1743 (2000).CrossRefADSGoogle Scholar
  18. 18.
    R.D. Priestley, L.J. Broadbelt, J.M Torkelson, K. Fukao, Phys. Rev. E 75, 061806 (2007).CrossRefADSGoogle Scholar
  19. 19.
    M. Wubbenhorst, C.A. Murray, J.R. Dutcher, Eur. Phys. J. E 12, S109 (2003).CrossRefGoogle Scholar
  20. 20.
    S. Napolitano, M. Wubbenhorst, J. Phys. Chem. B 111, 9197 (2007).CrossRefGoogle Scholar
  21. 21.
    S. Peter, S. Napolitano, H. Meyer, M. Wubbenhorst, J. Baschnagel, Macromolecules 41, 7729 (2008).CrossRefADSGoogle Scholar
  22. 22.
    D. Labahn, R. Mix, A. Schonhals, Phys. Rev. E. 79, 011801 (2009).CrossRefADSGoogle Scholar
  23. 23.
    J.H. van Zanten, W.E. Wallace, W.L. Wu, Phys. Rev. E 53, R2053 (1996).CrossRefADSGoogle Scholar
  24. 24.
    O.K.C. Tsui, T.P. Russell, C.J. Hawker, Macromolecules 34, 5535 (2001).CrossRefADSGoogle Scholar
  25. 25.
    T. Miyazaki, K. Nishida, T. Kanaya, Phys. Rev. E 69, 061803 (2004).CrossRefADSGoogle Scholar
  26. 26.
    G.B. DeMaggio, W.E. Frieze, D.W. Gidley, H.A. Hristov, A.F. Yee, Phys. Rev. Lett. 78, 1524 (1997).CrossRefADSGoogle Scholar
  27. 27.
    D.S. Fryer, P.F. Nealey, J.J. de Pablo, Macromolecules 33, 6439 (2000).CrossRefADSGoogle Scholar
  28. 28.
    D.B. Hall, J.C. Hooker, J.M. Torkelson, Macromolecules 30, 667 (1997).CrossRefADSGoogle Scholar
  29. 29.
    C.J. Ellison, S.D. Kim, D.B. Hall, J.M. Torkelson, Eur. Phys. J. E 8, 155 (2002).CrossRefGoogle Scholar
  30. 30.
    C.J. Ellison, J.M. Torkelson, Nat. Mater. 2, 695 (2003).CrossRefADSGoogle Scholar
  31. 31.
    C.J. Ellison, R.L. Ruszkowski, N.J. Fredin, J.M. Torkelson, Phys. Rev. Lett. 92, 095702 (2004).CrossRefADSGoogle Scholar
  32. 32.
    R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Macromolecules 38, 654 (2005).CrossRefADSGoogle Scholar
  33. 33.
    C.J. Ellison, M.K. Mundra, J.M. Torkelson, Macromolecules 38, 1767 (2005).CrossRefADSGoogle Scholar
  34. 34.
    R.D. Priestley, C.J. Ellison, L.J. Broadbelt, J.M. Torkelson, Science 309, 456 (2005).CrossRefADSGoogle Scholar
  35. 35.
    M.K. Mundra, C.J. Ellison, R.E. Behling, J.M. Torkelson, Polymer 47, 7747 (2006).CrossRefGoogle Scholar
  36. 36.
    R.D. Priestley, M.K. Mundra, N.J. Barnett, L.J. Broadbelt, J.M. Torkelson, Aust. J. Chem. 60, 765 (2007).CrossRefGoogle Scholar
  37. 37.
    C.B. Roth, K.L. McNerny, W.F. Jager, J.M. Torkelson, Macromolecules 40, 2568 (2007).CrossRefADSGoogle Scholar
  38. 38.
    C.B. Roth, J.M. Torkelson, Macromolecules 40, 3328 (2007).CrossRefADSGoogle Scholar
  39. 39.
    M.K. Mundra, S.K. Donthu, V.P. Dravid, J.M. Torkelson, Nano Lett. 7, 713 (2007).CrossRefADSGoogle Scholar
  40. 40.
    P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Nat. Mater. 6, 278 (2007).CrossRefADSGoogle Scholar
  41. 41.
    M.K. Mundra, C.J. Ellison, P. Rittigstein, J.M. Torkelson, Eur. Phys. J. ST 141, 143 (2007).Google Scholar
  42. 42.
    K. Tanaka, Y. Tateishi, Y. Okada, T. Nagamura, M. Doi, H. Morita, J. Phys. Chem. B 113, 4571 (2009).CrossRefGoogle Scholar
  43. 43.
    H. Yang, J.S. Sharp, Macromolecules 41, 4811 (2008).CrossRefADSGoogle Scholar
  44. 44.
    J.L. Keddie, R.A.L. Jones, Israel J. Chem. 35, 21 (1995).Google Scholar
  45. 45.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E 56, 5705 (1997).CrossRefADSGoogle Scholar
  46. 46.
    J. Mattsson, J.A. Forrest, L. Borjesson, Phys. Rev. E 62, 5187 (2000).CrossRefADSGoogle Scholar
  47. 47.
    C.B. Roth, A. Pound, S.W. Kamp, C.A. Murray, J.R. Dutcher, Eur. Phys. J. E 20, 441 (2006).CrossRefGoogle Scholar
  48. 48.
    H. Liem, J. Cabanillas-Gonzalez, P. Etchegoin, D.D.C. Bradley, J. Phys.: Condens. Matter 16, 721 (2004).CrossRefADSGoogle Scholar
  49. 49.
    T. Miyazaki, R. Inoue, K. Nishida, T. Kanaya, Eur. Phys. J. ST 141, 203 (2007).Google Scholar
  50. 50.
    P.A. O’Connell, S.A. Hutcheson, G.B. McKenna, J. Polym. Sci. Part B: Polym. Phys. 46, 1952 (2008).CrossRefGoogle Scholar
  51. 51.
    S. Kim, C.B. Roth, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 46, 2754 (2008).CrossRefGoogle Scholar
  52. 52.
    C. Rotella, S. Napolitano, M. Wubbenhorst, Macromolecules 42, 5 (2009).CrossRefGoogle Scholar
  53. 53.
    T.S. Jain, J.J. de Pablo, Phys. Rev. Lett. 92, 155505 (2004).CrossRefADSGoogle Scholar
  54. 54.
    D.B. Hall, P. Underhill, J.M. Torkelson, Polym. Eng. Sci. 38, 2039 (1998).CrossRefGoogle Scholar
  55. 55.
    G.B. McKenna, Eur. Phys. J. ST 141, 291 (2007).Google Scholar
  56. 56.
    J. Kim, M.M. Mok, R.W. Sandoval, D.J. Woo, J.M. Torkelson, Macromolecules 39, 6152 (2006).CrossRefADSGoogle Scholar
  57. 57.
    J. Brandrup, E.H. Immergut, Polymer Handbook (Wiley, New York, 1989).Google Scholar
  58. 58.
    R. Greiner, F.R. Schwarzl, Rheol. Acta 23, 378 (1984).CrossRefGoogle Scholar
  59. 59.
    R. Seemann, K. Jacobs, K. Landfester, S. Herminghaus, J. Polym. Sci. Part B: Polym. Phys. 44, 2968 (2006).CrossRefGoogle Scholar
  60. 60.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1999).Google Scholar
  61. 61.
    Y.S. Lipatov, T.E. Geller, Polym. Sci. USSR 9, 244 (1967).CrossRefGoogle Scholar
  62. 62.
    P. Rittigstein, J.M. Torkelson, J. Polym. Sci. Part B: Polym. Phys. 44, 2935 (2006).CrossRefGoogle Scholar
  63. 63.
    B.J. Ash, L.S. Schadler, R.W. Siegel, Mater. Lett. 55, 83 (2002).CrossRefGoogle Scholar
  64. 64.
    L.S. Schadler, S.K. Kumar, B.C. Beniecewicz, S.L. Lewis, S.E. Harton, MRS Bull. 32, 335 (2007).Google Scholar
  65. 65.
    T. Ramanathan, A.A. Abdala, S. Stankovich, D.A. Dikin, M. Herrera-Alonso, R.D. Piner, D.H. Adamson, H.C. Schniepp, X. Chen, R.S. Ruoff, S.T. Nguyen, I.A. Aksay, R.K. Prud’homme, L.C. Brinson, Nat. Nanotech. 3, 327 (2008).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • S. Kim
    • 1
  • S. A. Hewlett
    • 2
  • C. B. Roth
    • 1
  • J. M. Torkelson
    • 1
    • 2
  1. 1.Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.Department of Materials Science and EngineeringNorthwestern UniversityEvanstonUSA

Personalised recommendations