Advertisement

Adhesive contact of rough surfaces: Comparison between numerical calculations and analytical theories

  • G. CarboneEmail author
  • M. Scaraggi
  • U. Tartaglino
Regular Article

Abstract

The authors have employed a numerical procedure to analyse the adhesive contact between a soft elastic layer and a rough rigid substrate. The solution to the problem, which belongs to the class of the free boundary problems, is obtained by calculating Green’s function which links the pressure distribution to the normal displacements at the interface. The problem is then formulated in the form of a Fredholm integral equation of the first kind with a logarithmic kernel. The boundaries of the contact area are calculated by requiring the energy of the system to be stationary. This methodology has been employed to study the adhesive contact between an elastic semi-infinite solid and a randomly rough rigid profile with a self-affine fractal geometry. We show that, even in the presence of adhesion, the true contact area still linearly depends on the applied load. The numerical results are then critically compared with the predictions of an extended version of Persson’s contact mechanics theory, which is able to handle anisotropic surfaces, as 1D interfaces. It is shown that, for any given load, Persson’s theory underestimates the contact area by about 50% in comparison with our numerical calculations. We find that this discrepancy is larger than for 2D rough surfaces in the case of adhesionless contact. We argue that this increased difference might be explained, at least partially, by considering that Persson’s theory is a mean-field theory in spirit, so it should work better for 2D rough surfaces rather than for 1D rough surfaces. We also observe that the predicted value of separation is in agreement with our numerical results as well as the exponents of the power spectral density of the contact pressure distribution and of the elastic displacement of the solid. Therefore, we conclude that Persson’s theory captures almost exactly the main qualitative behaviour of the rough contact phenomena.

PACS

46.55.+d Tribology and mechanical contacts 68.35.Np Adhesion 46.50.+a Fracture mechanics, fatigue and cracks 81.40.Pq Friction, lubrication, and wear 

References

  1. 1.
    C. Yang, U. Tartaglino, B.N.J. Persson, Eur. Phys. J. E 19, 47 (2006).CrossRefGoogle Scholar
  2. 2.
    M. Borri-Brunetto, B. Chiaia, M. Ciavarella, Comput. Methods Appl. Mech. Eng. 190, 6053 (2001).zbMATHCrossRefGoogle Scholar
  3. 3.
    S. Hyun, L. Pei, J.-F. Molinari, M.O. Robbins, Phys. Rev. E 70, 026117 (2004).CrossRefADSGoogle Scholar
  4. 4.
    C. Campañá, Phys. Rev. E 78, 026110 (2008).CrossRefADSGoogle Scholar
  5. 5.
    J.A. Greenwood, J.B.P. Williamson, Proc. R. Soc. London, Ser. A 295, 300 (1966).CrossRefADSGoogle Scholar
  6. 6.
    A.W. Bush, R.D. Gibson, T.R. Thomas, Wear 35, 87 (1975).CrossRefGoogle Scholar
  7. 7.
    T.R. Thomas, Rough Surfaces, Chapt. 8 (Longman Group Limited, New York, 1982).Google Scholar
  8. 8.
    J.A. Greenwood, Wear 261, 191 (2006).CrossRefGoogle Scholar
  9. 9.
    G. Carbone, J. Mech. Phys. Solids 57, 1093 (2009).CrossRefADSGoogle Scholar
  10. 10.
    B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001).CrossRefADSGoogle Scholar
  11. 11.
    B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002).Google Scholar
  12. 12.
    G. Carbone, F. Bottiglione, J. Mech. Phys. Solids 56, 2555 (2008).zbMATHCrossRefADSGoogle Scholar
  13. 13.
    C. Campañá, M.H. Müser, M.O. Robbins, J. Phys.: Condens. Matter 20, 354013 (2008).CrossRefGoogle Scholar
  14. 14.
    B.N.J. Persson, J. Phys.: Condens. Matter 20, 312001 (2008).CrossRefADSGoogle Scholar
  15. 15.
    C. Yang, B.N.J. Persson, Phys. Rev. Lett. 100, 024303 (2008).CrossRefADSGoogle Scholar
  16. 16.
    G. Carbone, B. Lorenz, B.N.J. Persson, A. Wohlers, Eur. Phys. J. E 29, 275 (2009).CrossRefGoogle Scholar
  17. 17.
    C. Campañá, M.H. Müser, Phys. Rev. B 74, 075420 (2006).CrossRefADSGoogle Scholar
  18. 18.
    G. Carbone, L. Mangialardi, J. Mech. Phys. Solids 56, 684 (2008).zbMATHCrossRefADSMathSciNetGoogle Scholar
  19. 19.
    G. Carbone, L. Mangialardi, J. Mech. Phys. Solids 52, 1267 (2004).zbMATHCrossRefADSGoogle Scholar
  20. 20.
    E. Polak, G. Ribière, Rev. Fr. Informat. Rech. Opér. 16, 35 (1969).Google Scholar
  21. 21.
    A.A. Griffith, Phil. Trans. R. Soc. A 221, 163 (1920).CrossRefADSGoogle Scholar
  22. 22.
    G. Carbone, L. Mangialardi, B.N.J. Persson, Phys. Rev. B 70, 125407 (2004).CrossRefADSGoogle Scholar
  23. 23.
    B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti, J. Phys.: Condens. Matter 17, R1 (2005).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.DIMeG - Politecnico di BariBariItaly
  2. 2.IFF Forschungszentrum JuelichJuelichGermany

Personalised recommendations