Advertisement

The European Physical Journal E

, Volume 29, Issue 4, pp 363–378 | Cite as

Two-dimensional perturbations in a scalar model for shear banding

  • J. L. A. DubbeldamEmail author
  • P. D. Olmsted
Regular Article
  • 66 Downloads

Abstract

We present an analytical study of a toy model for shear banding, without normal stresses, which uses a piecewise linear approximation to the flow curve (shear stress as a function of shear rate). This model exhibits multiple stationary states, one of which is linearly stable against general two-dimensional perturbations. This is in contrast to analogous results for the Johnson-Segalman model, which includes normal stresses, and which has been reported to be linearly unstable for general two-dimensional perturbations. This strongly suggests that the linear instabilities found in the Johnson-Segalman can be attributed to normal stress effects.

PACS

47.50.-d Non-Newtonian fluid flows 47.20.-k Flow instabilities 47.57.Ng Polymers and polymer solutions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Cohen, B. Davidovitch, A. Schofield, M. Brenner, D. Weitz, Phys. Rev. Lett. 97, 215502 (2006).Google Scholar
  2. 2.
    V. Schmitt, F. Lequeux, A. Pousse, D. Roux, Langmuir 10, 955 (1994).Google Scholar
  3. 3.
    O. Radulescu, P.D. Olmsted, Rheol. Acta 38, 606 (1999).Google Scholar
  4. 4.
    N.A. Spenley, X.F. Yuan, M.E. Cates, J. Phys. II 6, 551 (1996).Google Scholar
  5. 5.
    C.Y.D. Lu, P.D. Olmsted, R.C. Ball, Phys. Rev. Lett. 84, 642 (2000).Google Scholar
  6. 6.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1989).Google Scholar
  7. 7.
    T. Shimada, M. Doi, K. Okano, J. Phys. Soc. Jpn. 57, 2432 (1988).Google Scholar
  8. 8.
    M.E. Cates, J. Phys.: Condens Matter 8, 9167 (1996).Google Scholar
  9. 9.
    M.R. Lopez-Gonzalez, W.M. Holmes, P.T. Callaghan, P.J. Photinos, Phys. Rev. Lett. 93, 268302 (2004).Google Scholar
  10. 10.
    S. Lerouge, J.P. Decruppe, J.F. Berret, Langmuir 16, 6464 (2000).Google Scholar
  11. 11.
    L. Becu, S. Manneville, A. Colin, Phys. Rev. Lett. 93, 018301 (2004).Google Scholar
  12. 12.
    M.E. Cates, D.A. Head, A. Ajdari, Phys. Rev. E 66, 025202 (2002).Google Scholar
  13. 13.
    A. Aradian, M.E. Cates, Europhys. Lett. 70, 397 (2005).Google Scholar
  14. 14.
    S.M. Fielding, P.D. Olmsted, Phys. Rev. Lett. 92, 084502 (2004).Google Scholar
  15. 15.
    R. Ganapathy, A. Sood, Phys. Rev. Lett. 96, 108301 (2006).Google Scholar
  16. 16.
    R. Ganapathy, A. Sood, Langmuir 22, 11016 (2006).Google Scholar
  17. 17.
    R. Bandyopadhyay, G. Basappa, A.K. Sood, Phys. Rev. Lett. 84, 2022 (2000).Google Scholar
  18. 18.
    S.M. Fielding, Phys. Rev. Lett. 95, 134501 (2005).Google Scholar
  19. 19.
    S.M. Fielding, P.D. Olmsted, Phys. Rev. Lett. 96, 104502 (2006).Google Scholar
  20. 20.
    H. Wilson, S. Fielding, J. Non-Newt. Fluid Mech. 138, 181 (2006).Google Scholar
  21. 21.
    P.D. Olmsted, O. Radulescu, C.-Y.D. Lu, J. Rheol. 44, 257 (2000).Google Scholar
  22. 22.
    W. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery, Numerical Recipes in C, 2nd edition (Cambridge University Press, Cambridge, 1992).Google Scholar
  23. 23.
    P. Grindrod, The Theory and Applications of Reaction-Diffusion Equations Patterns and Waves (Clarendon Press, Oxford, 1996).Google Scholar
  24. 24.
    C.-S. Yih, J. Fluid Mech. 29, 539 (1967).Google Scholar
  25. 25.
    E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, D. Sorensen, LAPACK Users’ Guide (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1999).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Delft University of TechnologyCD DelftThe Netherlands
  2. 2.Polymer IRC and School of Physics & AstronomyUniversity of LeedsLeedsUK

Personalised recommendations