Advertisement

The European Physical Journal E

, Volume 29, Issue 4, pp 391–397 | Cite as

Cassie-Baxter to Wenzel state wetting transition: Scaling of the front velocity

  • A. M. Peters
  • C. Pirat
  • M. Sbragaglia
  • B. M. Borkent
  • M. Wessling
  • D. Lohse
  • R. G. H. LammertinkEmail author
Regular Article

Abstract

We experimentally study the dynamics of water in the Cassie-Baxter state to Wenzel state transition on surfaces decorated with assemblies of micrometer-size square pillars arranged on a square lattice. The transition on the micro-patterned superhydrophobic polymer surfaces is followed with a high-speed camera. Detailed analysis of the movement of the liquid during this transition reveals the wetting front velocity dependence on the geometry and material properties. We show that a decrease in gap size as well as an increase in pillar height and intrinsic material hydrophobicity result in a lower front velocity. Scaling arguments based on balancing surface forces and viscous dissipation allow us to derive a relation with which we can rescale all experimentally measured front velocities, obtained for various pattern geometries and materials, on one single curve.

PACS

68.03.Cd Surface tension and related phenomena 68.08.Bc Wetting 68.08.De Liquid-solid interface structure: measurements and simulations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Quéré, Rep. Prog. Phys. 68, 2495 (2005).Google Scholar
  2. 2.
    X. Feng, L. Jiang, Adv. Mater. 18, 3063 (2005).Google Scholar
  3. 3.
    X.M. Li, D. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 36, 1350 (2007).Google Scholar
  4. 4.
    X.M. Li, D. Reinhoudt, M. Crego-Calama, Chem. Soc. Rev. 36, 1529 (2007).Google Scholar
  5. 5.
    W. Barthlott, C. Neinhuis, Planta 202, 1 (1997).Google Scholar
  6. 6.
    C. Neinhuis, W. Barthlott, Ann. Bot. 79, 667 (1997).Google Scholar
  7. 7.
    A.B.D. Cassie, S. Baxter, Trans. Faraday Soc. 40, 546 (1944).Google Scholar
  8. 8.
    R.N. Wenzel, Ind. Engin. Chem. 28, 988 (1936).Google Scholar
  9. 9.
    N.A. Patankar, Langmuir 19, 1249 (2003).Google Scholar
  10. 10.
    A. Marmur, Langmuir 19, 8343 (2003).Google Scholar
  11. 11.
    A. Marmur, Langmuir 20, 3517 (2004).Google Scholar
  12. 12.
    J. Bico, C. Marzolin, D. Quéré, Europhys. Lett. 47, 220 (1999).Google Scholar
  13. 13.
    N.A. Patankar, Langmuir 20, 7097 (2004).Google Scholar
  14. 14.
    S. Moulinet, D. Bartolo, Eur. Phys. J. E 24, 251 (2007).Google Scholar
  15. 15.
    H. Kusumaatmaja, J.M. Yeomans, Bull. Pol. Acad. Sci.: Tech. Sci. 55, 203 (2007).Google Scholar
  16. 16.
    J. Bico, U. Thiele, D. Quéré, Colloids Surf. A: Physico\-chem. Engin. Asp. 206, 41 (2002).Google Scholar
  17. 17.
    W. Li, A. Amirfazli, Adv. Colloid Interface Sci. 132, 51 (2007).Google Scholar
  18. 18.
    L. Barbieri, E. Wagner, P. Hoffmann, Langmuir 23, 1723 (2007).Google Scholar
  19. 19.
    G. McHale, N.J. Shirtcliffe, S. Aqil, C.C. Perry, M.I. Newton, Phys. Rev. Lett. 93, 036102 (2004).Google Scholar
  20. 20.
    Y. Yu, Z.H. Zhao, Q.S. Zheng, Langmuir 223, 8212 (2007).Google Scholar
  21. 21.
    B. He, N. A. Patankar, J. Lee, Langmuir 19, 4999 (2003).Google Scholar
  22. 22.
    D. Oner, T.J. McCarthy, Langmuir 16, 7777 (2000).Google Scholar
  23. 23.
    M. Sbragaglia, A.M. Peters, C. Pirat, B.M. Borkent, R.G.H. Lammertink, M. Wessling, D. Lohse, Phys. Rev. Lett. 99, 156001 (2007).Google Scholar
  24. 24.
    J. Bico, C. Tordeux, D. Quéré, Europhys. Lett. 55, 214 (2001).Google Scholar
  25. 25.
    A. Lafuma, D. Quéré, Nat. Mater. 2, 457 (2003).Google Scholar
  26. 26.
    C. Pirat, M. Sbragaglia, A.M. Peters, B.M. Borkent, R.G.H. Lammertink, M. Wessling, D. Lohse, EPL 81, 66002 (2008).Google Scholar
  27. 27.
    T. Cubaud, M. Fermigier, Europhys. Lett. 55, 239 (2001).Google Scholar
  28. 28.
    T. Cubaud, M. Fermigier, J. Colloid Interface Sci. 269, 171 (2004).Google Scholar
  29. 29.
    L. Courbin, E. Denieul, E. Dressaire, M. Roper, A. Ajdari, H.A. Stone, Nat. Mater. 6, 661 (2007).Google Scholar
  30. 30.
    C. Ishino, M. Reyssat, E. Reyssat, K. Okumura, D. Quéré, EPL 79, 56005 (2007).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • A. M. Peters
    • 1
    • 5
  • C. Pirat
    • 2
    • 3
    • 5
  • M. Sbragaglia
    • 2
    • 4
    • 5
  • B. M. Borkent
    • 2
    • 5
  • M. Wessling
    • 1
    • 5
  • D. Lohse
    • 2
    • 5
  • R. G. H. Lammertink
    • 1
    • 5
    Email author
  1. 1.Membrane Technology Group, Faculty of Science and Technology, Mesa+ Institute for NanotechnologyUniversity of TwenteAE EnschedeThe Netherlands
  2. 2.Physics of Fluids, Faculty of Science and Technology, Mesa+ Institute for NanotechnologyUniversity of TwenteAE EnschedeThe Netherlands
  3. 3.Laboratoire de Physique de la Matière Condensée et NanostructuresUniversité de Lyon, Univ. Lyon I, CNRS, UMR 5586VilleurbanneFrance
  4. 4.Department of PhysicsUniversity of Rome Tor VergataRomeItaly
  5. 5.Impact, Institute on Mechanics, Processes and Control TwenteUniversity of TwenteAE EnschedeThe Netherlands

Personalised recommendations