Advertisement

The European Physical Journal E

, Volume 29, Issue 3, pp 275–284 | Cite as

Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties

  • G. CarboneEmail author
  • B. Lorenz
  • B. N. J. Persson
  • A. Wohlers
Regular Article

Abstract

In this paper we extend the theory of contact mechanics and rubber friction developed by one of us (B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001)) to the case of surfaces with anisotropic surface roughness. As an application we calculate the viscoelastic contribution to the rubber friction. We show that the friction coefficient may depend significantly on the sliding direction, while the area of contact depends weakly on the sliding direction. We have carried out experiments for rubber blocks sliding on unidirectionally polished steel surfaces. The experimental data are in a good qualitative agreement with the theory.

PACS

46.55.+d Tribology and mechanical contacts 81.40.Pq Friction, lubrication, and wear 62.40.+i Anelasticity, internal friction, stress relaxation, and mechanical resonances 81.05.Lg Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F.P. Bowden, D. Tabor, Proc. R. Soc. London, Ser. A-Math. Phys. Eng. Sci. 169, 391 (1939).Google Scholar
  2. 2.
    J.F. Archard, W. Hirst, Proc. R. Soc. London, Ser. A-Math. Phys. Eng. Sci. 236, 397 (1956).Google Scholar
  3. 3.
    B.N.J. Persson, O. Albohr, C. Creton, V. Peveri, J. Chem. Phys. 120, 8779 (2004).Google Scholar
  4. 4.
    C.Y. Hui, Y.Y. Lin, J.M. Baney, J. Polym. Sci. B 38, 1485 (2000).Google Scholar
  5. 5.
    B.N.J. Persson, Eur. Phys. J. E 8, 385 (2002).Google Scholar
  6. 6.
    G. Carbone, L. Mangialardi, B.N.J. Persson, Phys. Rev. B 70, 125407 (2004).Google Scholar
  7. 7.
    S. Hyun, L. Pei, J.-F. Molinari, M.O. Robbins, Phys. Rev. E 70, 026117 (2004).Google Scholar
  8. 8.
    M. Borri-Brunetto, B. Chiaia, M. Ciavarella, Comput. Meth. Appl. Mech. Eng. 190, 6053 (2001).Google Scholar
  9. 9.
    C. Campañà, M.H. Müser, M.O. Robbins, J. Phys.: Condens. Matter 20, 354013 (2008).Google Scholar
  10. 10.
    B.N.J. Persson, Sliding Friction: Physical Principles and Applications, 2nd edition (Springer, Heidelberg, 2000).Google Scholar
  11. 11.
    J.N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1995).Google Scholar
  12. 12.
    B.N.J. Persson, Surf. Sci. Rep. 61, 201 (2006).Google Scholar
  13. 13.
    B.N.J. Persson, O. Albohr, U. Tartaglino, A.I. Volokitin, E. Tosatti., J. Phys.: Condens. Matter 17, R1 (2005).Google Scholar
  14. 14.
    B.N.J. Persson, J. Chem. Phys. 115, 3840 (2001).Google Scholar
  15. 15.
    B.N.J. Persson, O. Albohr, G. Heinrich, H. Ueba, J. Phys.: Condens. Matter 17, R1071 (2005).Google Scholar
  16. 16.
    A. Schallamach, Wear 6, 375 (1963)Google Scholar
  17. 17.
    D. Maugis, J. Adhes. Sci. Technol. 9, 1005 (1995).Google Scholar
  18. 18.
    R.M. Christensen, Theory of Viscoelasticity, 2nd edition (Dover Publications, Inc., Mineola, New York, 2003).Google Scholar
  19. 19.
    G. Carbone, L. Mangialardi, J. Mech. Phys. Solids 56, 684 (2008).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • G. Carbone
    • 1
    • 2
    Email author
  • B. Lorenz
    • 1
    • 3
  • B. N. J. Persson
    • 1
  • A. Wohlers
    • 3
  1. 1.IFF, FZ-JülichJülichGermany
  2. 2.DIMeG - Politecnico di BariBariItaly
  3. 3.IFASRWTH Aachen UniversityAachenGermany

Personalised recommendations