The European Physical Journal E

, Volume 29, Issue 2, pp 239–244 | Cite as

Spreading of diblock copolymer droplets: A probe of polymer micro-rheology

  • A. B. Croll
  • K. Dalnoki-Veress
Regular Article


We present an experimental study of the spreading dynamics of symmetric diblock copolymer droplets above and below the order-disorder transition. Disordered diblock droplets are found to spread as a homopolymer and follow Tanner’s law (the radius grows as Rt m , where t is time and m = 1/10 . However, droplets that are in the ordered phase are found to be frustrated by the imposed lamellar microstructure. This frustration is likely at the root of the observed deviation from Tanner’s law: droplet spreading has a much slower power law ( m ∼ 0.05±0.01 . We show that the different spreading dynamics can be reconciled with conventional theory if a strain-rate-dependent viscosity is taken into account.


83.80.Uv Block copolymers 68.08.Bc Wetting 82.35.Gh Polymers on surfaces; adhesion 47.55.D- Drops and bubbles 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.G. de Gennes, F. Brochard-Wyart, D. Quéré, Capillarity and Wetting Phenomena (Springer-Verlag New York Inc., 2002) pp. 139-151.Google Scholar
  2. 2.
    L.H. Tanner, J. Phys. D: Appl. Phys. 12, 1473 (1979).Google Scholar
  3. 3.
    M.D. Lelah, A. Marmur, J. Colloid Interface Sci. 82, 518 (1981).Google Scholar
  4. 4.
    G. He, N.G. Hadjiconstantinou, J. Fluid. Mech. 497, 123 (2003).Google Scholar
  5. 5.
    D. Ausserré, A.M. Picard, L. Léger, Phys. Rev. Lett. 57, 2671 (1986).Google Scholar
  6. 6.
    L. Léger, M. Erman, A.M. Guinet-Picard, D. Ausserré, C. Strazielle, Phys. Rev. Lett. 60, 2671 (1988).Google Scholar
  7. 7.
    E. Pérez, E. Schäffer, U. Steiner, J. Colloid Interface Sci. 234, 178 (2001).Google Scholar
  8. 8.
    D.R. Heine, G.S. Grest, E.B. Webb III, Phys. Rev. E 68, 061603 (2003).Google Scholar
  9. 9.
    W. Hardy, Philos. Mag. 38, 49 (1919).Google Scholar
  10. 10.
    P.G. de Gennes, Rev. Mod. Phys. 57, 827 (1985).Google Scholar
  11. 11.
    G.H. Fredrickson, F.S. Bates, Annu. Rev. Mater. Sci. 26, 501 (1996).Google Scholar
  12. 12.
    M.J. Fasolka, A.M. Mayes, Annu. Rev. Mater. Sci. 31, 323 (2001).Google Scholar
  13. 13.
    F.S. Bates, G.H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1996).Google Scholar
  14. 14.
    M.W. Matsen, J. Phys.: Condens. Matter 14, R21 (2002).Google Scholar
  15. 15.
    With $\beta \sim 0.6$, the scaling of $\alpha \sim \Omega^{0.296}$. This is not discernible from the scaling observed in Tanner’s law regime of $\alpha \sim \Omega^{3/10}$ and the reason is that the collapse of the data in fig. master works well in both regimes.Google Scholar
  16. 16.
    H. Braun, W. Gleinser, H.-J. Cantow, J. Appl. Polym. Sci. 49, 487 (1993).Google Scholar
  17. 17.
    A.B. Croll, M.V. Massa, M.W. Matsen, K. Dalnoki-Veress, Phys. Rev. Lett. 97, 204502 (2006).Google Scholar
  18. 18.
    R.G. Larson, K.I. Winey, S.S. Patel, H. Watanabe, R. Bruinsma, Rheol. Acta. 32, 245 (1993).Google Scholar
  19. 19.
    W.W. Graessley, Adv. Polym. Sci. 16, 1 (1974).Google Scholar
  20. 20.
    T.A. Witten, L. Leibler, P.A. Pincus, Macromolecules 23, 824 (1990).Google Scholar
  21. 21.
    A.B. Croll, M.W. Matsen, A.-C. Shi, K. Dalnoki-Veress, Eur. Phys. J. E 27, 407 (2008).Google Scholar
  22. 22.
    S. Rafaï, D. Bonn, A. Boudaoud, J. Fluid. Mech. 513, 77 (2004).Google Scholar
  23. 23.
    A. Menelle, T.P. Russell, S.H. Anastasiadas, S.K. Satija, C.F. Majkrzak, Phys. Rev. Lett. 68, 67 (1992).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada

Personalised recommendations