The European Physical Journal E

, Volume 29, Issue 1, pp 27–36 | Cite as

Generic theory of colloidal transport

Regular Article


We discuss the motion of colloidal particles relative to a two-component fluid consisting of solvent and solute. Particle motion can result from i) net body forces on the particle due to external fields such as gravity; ii) slip velocities on the particle surface due to surface dissipative phenomena. The perturbations of the hydrodynamic flow field exhibit characteristic differences in cases i) and ii) which reflect different patterns of momentum flux corresponding to the existence of net forces, force dipoles or force quadrupoles. In the absence of external fields, gradients of concentration or pressure do not generate net forces on a colloidal particle. Such gradients can nevertheless induce relative motion between particle and fluid. We present a generic description of surface dissipative phenomena based on the linear response of surface fluxes driven by conjugate surface forces. In this framework we discuss different transport scenarios including self-propulsion via surface slip that is induced by active processes on the particle surface. We clarify the nature of force balances in such situations.


65.20.De General theory of thermodynamic properties of liquids, including computer simulation 05.60.-k Transport processes 47.10.-g General theory in fluid dynamics 87.16.Uv Active transport processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989).Google Scholar
  2. 2.
    M. Leonetti, Europhys. Lett. 32, 561 (1995).Google Scholar
  3. 3.
    P. Lammert, J. Prost, R. Bruinsma, J. Theor. Biol. 178, 387 (1996).Google Scholar
  4. 4.
    R. Golestanian, T.B. Liverpool, A. Ajdari, Phys. Rev. Lett. 94, 220801 (2005).Google Scholar
  5. 5.
    R. Golestanian, T.B. Liverpool, A. Ajdari, New J. Phys. 9, 126 (2007).Google Scholar
  6. 6.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007).Google Scholar
  7. 7.
    D. Bray, Cell Movements (Garland, New York, 1992).Google Scholar
  8. 8.
    M.J. Lighhill, Comm. Pure Appl. Math. 5, 109 (1952).Google Scholar
  9. 9.
    J.R. Blake, J. Fluid. Mech 46, 199 (1971).Google Scholar
  10. 10.
    S.R. De Groot, P. Mazur, Non-Equilibrium Thermodynamics (Dover, 1984).Google Scholar
  11. 11.
    L. Landau, E.M. Lifschitz, Fluid Mechanics (Butterworth-Heinemann, 1987).Google Scholar
  12. 12.
    P.C. Martin, O. Parodi, P.S. Pershan, Phys. Rev. A 6, 2401 (1972).Google Scholar
  13. 13.
    W.F. Paxton, J. Am. Chem. Soc. 126, 13424 (2004).Google Scholar
  14. 14.
    N. Bala Saidulu, K.L. Sebastian, J. Chem. Phys. 128, 074708 (2008).Google Scholar
  15. 15.
    U.M. Córdova-Figueroa, J.F. Brady, Phys. Rev. Lett. 100, 4 (2008).Google Scholar
  16. 16.
    J.-F. Joanny, F. Jülicher, K. Kruse, J. Prost, New J. Phys. 9, 422 (2007).Google Scholar
  17. 17.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics (Springer, 1983).Google Scholar
  18. 18.
    H.A. Stone, A.D.T. Samuel, Phys. Rev. Lett. 77, 4102 (1996).Google Scholar
  19. 19.
    D. Long, A. Ajdari, Phys. Rev. Lett. 81, 1529 (1998).Google Scholar
  20. 20.
    J.R. Blake, Proc. Cambridge Philos. Soc. 70, 303 (1971).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Max-Planck Institute for the Physics of Complex SystemsNöthnitzerstr. 38DresdenGermany
  2. 2.ESPCIParis Cedex 05France
  3. 3.Institut CuriePhysicochimie CurieParis Cedex 05France

Personalised recommendations