Advertisement

The European Physical Journal E

, Volume 28, Issue 1, pp 57–71 | Cite as

Deformation of cholesteric elastomers by uniaxial stress along the helix axis

  • W. Stille
Regular Article

Abstract

The deformation of cholesteric elastomers by mechanical stress applied parallel to the helix axis is studied by calculation of the free-energy density. The Frank-elasticity contribution is taken into account. A chiral solvent, present at cross-linking time, is in general considered to be replaced after cross-linking by a solvent with different chirality. Two special cases considered are zero and unchanged solvent chirality, the first known as that of imprinted cholesteric elastomers, the latter equivalent to intrinsic cholesteric elastomers with chemically attached chiral groups. Depending on material parameters and imposed strain, the director can show a tilt towards the helix axis up to the maximum tilt, corresponding to a nematic state. In case of intrinsic elastomers with low conformation anisotropy, direct transitions from untilted to nematic states can be induced by straining. The helix structure of the director field is coarsened with an average wave number different to that of the information inscribed in the network at cross-linking time, if this lowers the average free-energy density. Switching between different states can be achieved with electric fields of reasonable values applied parallel to the helix axis. Spectra of the reflection of polarized light are calculated.

PACS

83.80.Va Elastomeric polymers 61.30.-v Liquid crystals 42.70.Qs Photonic bandgap materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Warner, E.M. Terentjev, Liquid Crystal Elastomers (Clarendon Press, Oxford, 2003).Google Scholar
  2. 2.
    C.D. Hasson, F.J. Davis, G.R. Mitchell, Chem. Commun. 2515 (1998).Google Scholar
  3. 3.
    Y. Mao, M. Warner, Phys. Rev. Lett. 84, 5335 (2000).Google Scholar
  4. 4.
    H. de Vries, Acta Crystallogr. 4, 219 (1951).Google Scholar
  5. 5.
    M. Warner, E.M. Terentjev, R.B. Meyer, Y. Mao, Phys. Rev. Lett. 85, 2320 (2000).Google Scholar
  6. 6.
    Y. Mao, E.M. Terentjev, M. Warner, Phys. Rev. E 64, 041803 (2001).Google Scholar
  7. 7.
    P. Cicuta, A.R. Tajbakhsh, E.M. Terentjev, Phys. Rev. E 65, 051704 (2002).Google Scholar
  8. 8.
    P.A. Bermel, M. Warner, Phys. Rev. E 65, 056614 (2002).Google Scholar
  9. 9.
    P. Cicuta, A.R. Tajbakhsh, E.M. Terentjev, Phys. Rev. E 70, 011703 (2004).Google Scholar
  10. 10.
    J. Schmidtke, S. Kniesel, H. Finkelmann, Macromolecules 38, 1357 (2005).Google Scholar
  11. 11.
    C. Bourgerette, B. Chen, H. Finkelmann, M. Mitov, J. Schmidtke, W. Stille, Macromolecules 39, 8163 (2006).Google Scholar
  12. 12.
    D.J. Burridge, Y. Mao, M. Warner, Phys. Rev. E 74, 021708 (2006).Google Scholar
  13. 13.
    A.C. Callan-Jones, R.A. Pelcovits, R.B. Meyer, A.F. Bower, Phys. Rev. E 75, 011701 (2007).Google Scholar
  14. 14.
    W. Stille, J. Schmidtke, Eur. Phys. J. E 22, 117 (2007).Google Scholar
  15. 15.
    P.G. de Gennes, J. Prost, The Physics of Liquid Crystals, 2nd edn. (Clarendon Press, Oxford, 1993).Google Scholar
  16. 16.
    D.J. Burridge, Y. Mao, M. Warner, Phys. Rev. E 72, 051718 (2005).Google Scholar
  17. 17.
    D.W. Berreman, J. Opt. Soc. Am. 62, 502 (1972).Google Scholar
  18. 18.
    D.W. Berreman, Mol. Cryst. Liq. Cryst. 22, 175 (1973).Google Scholar
  19. 19.
    H. Wöhler, G. Haas, M. Fritsch, D.A. Mlynski, J. Opt. Soc. Am. A 5, 1554 (1988).Google Scholar
  20. 20.
    A.H. Gevorgyan, Opt. Spectrosc. 95, 70 (2003).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Physikalisches InstitutAlbert-Ludwigs-UniversitätFreiburgGermany

Personalised recommendations