The European Physical Journal E

, Volume 28, Issue 2, pp 221–229 | Cite as

Comparative atomistic and coarse-grained study of water: What do we lose by coarse-graining?

  • Han Wang
  • Christoph JunghansEmail author
  • Kurt Kremer
Open Access
Regular Article


We employ the inverse Boltzmann method to coarse-grain three commonly used three-site water models (TIP3P, SPC and SPC/E) where one molecule is replaced with one coarse-grained particle with isotropic two-body interactions only. The shape of the coarse-grained potentials is dominated by the ratio of two lengths, which can be rationalized by the geometric constraints of the water clusters. It is shown that for simple two-body potentials either the radial distribution function or the geometrical packing can be optimized. In a similar way, as needed for multiscale methods, either the pressure or the compressibility can be fitted to the all atom liquid. In total, a speed-up by a factor of about 50 in computational time can be reached by this coarse-graining procedure.


05.10.-a Computational methods in statistical physics and nonlinear dynamics 61.20.Ja Computer simulation of liquid structure 65.20.Jk Studies of thermodynamic properties of specific liquids 


  1. 1.
    S. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, S.H. Lee, J. Phys. Chem. B 102, 4193 (1998).Google Scholar
  2. 2.
    M.R. Shirts, V.S. Pande, J. Chem. Phys. 122, 134508 (2005).Google Scholar
  3. 3.
    D. Sebastiani, L. Delle Site, J. Chem. Theor. & Computat. 1, 78 (2005).Google Scholar
  4. 4.
    B. Duenweg, A.J.C. Ladd, Adv. Polym. Sci. 291, 89 (2009).Google Scholar
  5. 5.
    P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19, 155 (1992).Google Scholar
  6. 6.
    C. Junghans, M. Praprotnik, K. Kremer, Soft Matter 4, 156 (2008).Google Scholar
  7. 7.
    A.P. Lyubartsev, M. Karttunen, I. Vattulainen, A. Laaksonen, Soft Materials 1, 121 (2002).Google Scholar
  8. 8.
    R. Delgado-Buscalioni, K. Kremer, M. Praprotnik, J. Chem. Phys. 128, 114110 (2008).Google Scholar
  9. 9.
    S. Izvekov, J.M.J. Swanson, G.A. Voth, J. Phys. Chem. B 112, 4711 (2008).Google Scholar
  10. 10.
    J.D. Bernal, R.H. Fowler, J. Chem. Phys. 1, 515 (1933).Google Scholar
  11. 11.
    H.J.C. Berendsen, J.P. Postma, W.F. van Gunsteren, J. Hermans, in Intermolecular Forces, edited by B. Pullman (D. Reidel Publishing Company, Dordrecht, 1981), pp. 331--342.Google Scholar
  12. 12.
    W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, J. Chem. Phys. 79, 926 (1983).Google Scholar
  13. 13.
    H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Phys. Chem. 91, 6269 (1987).Google Scholar
  14. 14.
    M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000).Google Scholar
  15. 15.
    B. Guillot, J. Mol. Liquids 101, 219 (2002).Google Scholar
  16. 16.
    A. Baranyai, A. Bartók, A.A. Chialvo, J. Chem. Phys. 124, 074507 (2006).Google Scholar
  17. 17.
    A. Brodsky, Chem. Phys. Lett. 261, 563 (1996).Google Scholar
  18. 18.
    J.L. Finney, J. Mol. Liquids 90, 303 (2001).Google Scholar
  19. 19.
    V.E. Petrenko, M.L. Dubova, Y.M. Kessler, M.Y. Perova, Russ. J. Phys. Chem. 74, 1777 (2001).Google Scholar
  20. 20.
    S. Amira, D. Spångberg, K. Hermansson, J. Chem. Phys. 303, 327 (2004).Google Scholar
  21. 21.
    L.X. Dang, B.M. Pettitt, J. Phys. Chem. 91, 3349 (1987).Google Scholar
  22. 22.
    K. Toukan, A. Rahman, Phys. Rev. B 31, 2643 (1985).Google Scholar
  23. 23.
    S.B. Zhu, C.F. Wong, J. Chem. Phys. 98, 8892 (1993).Google Scholar
  24. 24.
    L.X. Dang, J. Chem. Phys. 97, 2659 (1992).Google Scholar
  25. 25.
    G. Lamoureux, A.D. MacKerell jr., B. Roux, J. Chem. Phys. 119, 5185 (2003).Google Scholar
  26. 26.
    S.W. Rick, S.J. Stuart, B.J. Berne, J. Chem. Phys. 101, 6141 (1994).Google Scholar
  27. 27.
    H.A. Stern, F. Rittner, B.J. Berne, R.A. Friesner, J. Chem. Phys. 115, 2237 (2001).Google Scholar
  28. 28.
    H. Yu, T. Hansson, W.F. van Gunsteren, J. Chem. Phys. 118, 221 (2002).Google Scholar
  29. 29.
    M. Praprotnik, S. Matysiak, L. Delle Site, K. Kremer, C. Clementi, J. Phys.: Condens. Matter 19, 292201 (2007).Google Scholar
  30. 30.
    A.P. Lyubartsev, A. Laaksonen, Phys. Rev. E 52, 3730 (1995).Google Scholar
  31. 31.
    D. Reith, M. Puetz, F. Mueller-Plathe, J. Comput. Chem. 24, 1624 (2003).Google Scholar
  32. 32.
    M.E. Johnson, T. Head-Gordon, A.A. Louis, J. Chem. Phys. 126, 144509 (2007).Google Scholar
  33. 33.
    J. Zwicker, R. Lovett, J. Chem. Phys. 93, 6752 (1990).Google Scholar
  34. 34.
    J.R. Errington, P.G. Debenedetti, Nature 409, 318 (2001).Google Scholar
  35. 35.
    F. Franks, Water: A Matrix of Life (Royal Society of Chemistry, 2000).Google Scholar
  36. 36.
    M.N. Rodnikova, J. Molec. Liquids 136, 211 (2007).Google Scholar
  37. 37.
    D. Eisenberg, W. Kauzmann, The Structure and Properties of Water (Clarendon Press Oxford, 1969).Google Scholar
  38. 38.
    H.J.C. Berendsen, D. van der Spoel, R. van Drunen, Comput. Phys. Commun. 91, 43 (1995).Google Scholar
  39. 39.
    E. Lindahl, B. Hess, D. van der Spoel, J. Molec. Model. 7, 306 (2001).Google Scholar
  40. 40.
    D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, J. Comput. Chem. 26, 1701 (2005).Google Scholar
  41. 41.
    H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984).Google Scholar
  42. 42.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993).Google Scholar
  43. 43.
    H.-J. Limbach, A. Arnold, B.A. Mann, C. Holm, Comput. Phys. Commun. 174, 704 (2006).Google Scholar
  44. 44.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, USA, 1989).Google Scholar
  45. 45.
    R.L. Henderson, Phys. Lett. A 49, 197 (1974).Google Scholar
  46. 46.
    V.A. Harmandaris, N.P. Adhikari, N.F.A. van der Vegt, K. Kremer, Macromolecules 39, 6708 (2006).Google Scholar
  47. 47.
    M. Praprotnik, L. Delle Site, K. Kremer, J. Chem. Phys. 123, 224106 (2005).Google Scholar
  48. 48.
    W. Tschp, K. Kremer, J. Batoulis, T. Brger, O. Hahn, Acta Polymer 49, 61 (1998).Google Scholar
  49. 49.
    J.P. Hansen, I.R. McDonald, Theory of Simple Liquids (Academic Press, 2006).Google Scholar
  50. 50.
    M. Baptista, R. Schmitz, B. Dünweg, A simple and robust solver for the Poisson-Boltzmann equation, submitted to Phys. Rev. E (2008).Google Scholar

Copyright information

© The Author(s) 2009

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Max Planck Institute for Polymer ResearchMainzGermany
  2. 2.LMAM and School of Mathematical SciencesPeking UniversityBeijingPRC

Personalised recommendations