Advertisement

The European Physical Journal E

, Volume 27, Issue 4, pp 425–434 | Cite as

Thermoelectric effect on charged colloids in the Hückel limit

  • J. Morthomas
  • A. Würger
Regular Article

Abstract

We study the thermophoretic coefficient DT of a charged colloid. The non-uniform electrolyte is characterized in terms of densities and diffusion currents of mobile ions. The hydrodynamic treatment in the vicinity of a solute particle relies on the Hückel approximation, which is valid for particles smaller than the Debye length, a\( \lambda\) . To leading order in the parameter a/\( \lambda\) , we find that the coefficient DT consists of two contributions, a dielectrophoretic term proportional to the permittivity derivative d\( \varepsilon\)/dT , and a Seebeck term, i.e., the macroscopic electric field induced by the thermal gradient in the electrolyte solution. Depending on the particle valency, these terms may take opposite signs, and their temperature dependence may result in a change of sign of thermophoresis, as observed in several recent experiments.

PACS

66.10.C- Diffusion and thermal diffusion 82.70.-y Disperse systems; complex fluids 47.57.J- Colloidal systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.M. Squires, S.R. Quake, Rev. Mod. Phys. 77, 977 (2005).Google Scholar
  2. 2.
    J.L. Viovy, Rev. Mod. Phys. 72, 813 (2000).Google Scholar
  3. 3.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989).Google Scholar
  4. 4.
    J.L. Anderson, D.C. Prieve, Langmuir 7, 403 (1991).Google Scholar
  5. 5.
    W. Köhler, S. Wiegand (Editors), Thermal Nonequilibrium Phenomena in Fluid Mixtures (Springer, 2001).Google Scholar
  6. 6.
    R. Piazza, A. Guarino, Phys. Rev. Lett. 88, 208302 (2002).Google Scholar
  7. 7.
    R. Piazza, A. Parola, J. Phys. Condens. Matter 15, 153102 (2008).Google Scholar
  8. 8.
    J. Rauch, W. Köhler, Macromolecules 38, 3571 (2005).Google Scholar
  9. 9.
    R. Kita, P. Polyakov, S. Wiegand, Macromolecules 40, 1638 (2007).Google Scholar
  10. 10.
    A. Leahy-Dios, J. Chem. Phys. 122, 234502 (2005).Google Scholar
  11. 11.
    P.-A. Artola, B. Rousseau, Phys. Rev. Lett. 98, 125901 (2007).Google Scholar
  12. 12.
    G. Galliero, S. Volz, J. Chem. Phys. 128, 064505 (2008).Google Scholar
  13. 13.
    S. Iacopini, R. Piazza, Europhys. Lett. 63, 247 (2003).Google Scholar
  14. 14.
    S.A. Putnam, D.G. Cahill, Langmuir 21, 5317 (2005).Google Scholar
  15. 15.
    S.A. Putnam, Langmuir 23, 9221 (2007).Google Scholar
  16. 16.
    S. Iacopini, R. Rusconi, R. Piazza, Eur. Phys. J. E 19, 59 (2006).Google Scholar
  17. 17.
    M. Braibanti, D. Vigolo, R. Piazza, Phys. Rev. Lett. 100, 108303 (2008).Google Scholar
  18. 18.
    S. Duhr, D. Braun, Proc. Natl. Acad. Sci. U.S.A. 103, 19678 (2006).Google Scholar
  19. 19.
    H. Ning, J.K.G. Dhont, S. Wiegand, Langmuir 24, 2426 (2008).Google Scholar
  20. 20.
    A. Würger, Phys. Rev. Lett. 101, 138302 (2008).Google Scholar
  21. 21.
    S.R. de Groot, P. Mazur, Non-equlibrium Thermodynamics (North Holland Publishing, Amsterdam, 1962).Google Scholar
  22. 22.
    P.C. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Dekker, 1997).Google Scholar
  23. 23.
    D. Vigolo, G. Brambilla, R. Piazza, Phys. Rev. E 75, 040401 (2007).Google Scholar
  24. 24.
    B.V. Derjaguin, N.V. Churaev, V.M. Muller, Surface Forces (Plenum Press, New York, 1987).Google Scholar
  25. 25.
    E. Ruckenstein, J. Colloid Interface Sci. 83, 77 (1981).Google Scholar
  26. 26.
    J.C. Giddings, P.M. Shinudu, S.N. Semenov, J. Colloid Interface Sci. 176, 454 (1995).Google Scholar
  27. 27.
    K.I. Morozov, JETP 88, 944 (1999).Google Scholar
  28. 28.
    A. Parola, R. Piazza, Eur. Phys. J. E 15, 255 (2004).Google Scholar
  29. 29.
    S. Fayolle, T. Bickel, A. Würger, Phys. Rev. E 77, 041404 (2008).Google Scholar
  30. 30.
    A. Würger, Phys. Rev. Lett. 98, 138301 (2007).Google Scholar
  31. 31.
    S.N. Rasuli, R. Golestanian, Phys. Rev. Lett. 101, 138301 (2008).Google Scholar
  32. 32.
    E. Bringuier, A. Bourdon, Phys. Rev. E 67, 011404 (2003).Google Scholar
  33. 33.
    S. Fayolle, Phys. Rev. Lett. 95, 208301 (2005).Google Scholar
  34. 34.
    J.K.G. Dhont, Langmuir 23, 1674 (2007).Google Scholar
  35. 35.
    J.K.G. Dhont, W.J. Briels, Eur. Phys. J. E 25, 61 (2008).Google Scholar
  36. 36.
    E.D. Eastman, J. Am. Chem. Soc. 50, 283Google Scholar
  37. 37.
    G. Guthrie, J. Chem. Phys. 17, 310 (1949).Google Scholar
  38. 38.
    E. Helfand, J.G. Kirkwood, J. Chem. Phys. 32, 857 (1960).Google Scholar
  39. 39.
    J.N. Agar, J. Phys. Chem. 93, 2082 (1989).Google Scholar
  40. 40.
    J.A. Stratton, Electromagnetic Theory (Mc Graw-Hill, New York, 1941).Google Scholar
  41. 41.
    L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Elsevier, 1983).Google Scholar
  42. 42.
    V.N. Sokolov, J. Solution Chem. 35, 1621 (2006).Google Scholar
  43. 43.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Elsevier, 1987).Google Scholar
  44. 44.
    S. Kim, S.J. Karilla, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann Boston, 1991).Google Scholar
  45. 45.
    L. Bocquet, E. Trizac, M. Aubouy, J. Chem. Phys. 117, 8138 (2002).Google Scholar
  46. 46.
    L.G. Longsworth, J. Phys. Chem. 61, 1557 (1957).Google Scholar
  47. 47.
    P.N. Snowdon, J.C.R. Turner, Trans. Faraday Soc. 56, 1409 (1960).Google Scholar
  48. 48.
    D.R. Caldwell, J. Phys. Chem. 77, 2004 (1973).Google Scholar
  49. 49.
    D.R. Caldwell, S.A. Eide, Deep Sea Res. 28A, 1605 (1981).Google Scholar
  50. 50.
    F.S. Gaeta, J. Phys. Chem. 26, 2967 (1982).Google Scholar
  51. 51.
    H. Yow, J. Lin, J. Solution Chem. 12, 487 (1983).Google Scholar
  52. 52.
    H. Brenner, Phys. Rev. E 74, 036306 (2006).Google Scholar
  53. 53.
    R.C. Weast (Editor), Handbook of Chemistry and Physics, 55th edition (CRC Press, 1974).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. Morthomas
    • 1
  • A. Würger
    • 1
  1. 1.CPMOHUniversité Bordeaux 1 & CNRSTalenceFrance

Personalised recommendations