Advertisement

The European Physical Journal E

, Volume 28, Issue 3, pp 265–272 | Cite as

Corona patterns around inclusions in freely suspended smectic films

  • K. Harth
  • R. Stannarius
Regular Article

Abstract

We discuss the structure and physical origin of corona patterns observed around solid or liquid spherical inclusions in freely suspended smectic films. Such patterns are observed when droplets or solid beads of micrometer size are sprayed onto the films. They are found in the smectic C phase and in the smectic A phase above such a smectic C phase, but disappear, for example, at the transition into a lower-temperature smectic B phase. We show that these structures are equivalent to splay domains found in the meniscus of freely suspended films, originating from surface-induced spontaneous splay.

PACS

47.57.-s Complex fluids and colloidal systems 61.30.Hn Surface phenomena alignment anchoring anchoring transitions surface-induced layering surface-induced ordering wetting prewetting transitions and wetting transitions 61.30.Eb Experimental determinations of smectic, nematic, cholesteric, and other structures 42.70.Df Liquid crystals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Poulin, H. Stark, T.C. Lubensky, D.A. Weitz, Science 275, 1770 (1997).Google Scholar
  2. 2.
    P. Poulin, V. Cabuil, D.A. Weitz, Phys. Rev. Lett. 79, 4862 (1997).Google Scholar
  3. 3.
    P. Poulin, D.A. Weitz, Phys. Rev. E 57, 626 (1998).Google Scholar
  4. 4.
    H. Stark, Phys. Rep. 351, 387 (2001).Google Scholar
  5. 5.
    M. Zapotocky, L. Ramos, P. Poulin, T.C. Lubensky, D.A. Weitz, Science 283, 209 (1999).Google Scholar
  6. 6.
    J.C. Loudet, P. Barois, P. Poulin, Nature 407, 611 (2000).Google Scholar
  7. 7.
    S.P. Meeker, W.C.K. Poon, J. Crain, E.M. Terentjev, Phys. Rev. E 61, R6083 (2000).Google Scholar
  8. 8.
    V.G. Nazarenko, A.B. Nych, B.I. Lev, Phys. Rev. Lett. 87, 075504 (2001).Google Scholar
  9. 9.
    T. Yamamoto, J. Yamamoto, B.I. Lev, H. Yokoyama, Appl. Phys. Lett. 81, 2187 (2002).Google Scholar
  10. 10.
    M. Tasinkevych, N.M. Silvestre, P. Patricio, M.M. Telo da Gama, Eur. Phys. J. E 9, 341 (2002).Google Scholar
  11. 11.
    M. Yada, J. Yamamoto, H. Yokoyama, Langmuir 18, 7436 (2002).Google Scholar
  12. 12.
    M. Yada, J. Yamamoto, H. Yokoyama, Phys. Rev. Lett. 92, 185501 (2004).Google Scholar
  13. 13.
    D. Andrienko, M. Tasinkevych, P. Patricio, M.M. Telo da Gama, Phys. Rev. E 69, 021706 (2004).Google Scholar
  14. 14.
    I.I. Smalyukh, S. Chernyshuk, B.I. Lev, A.B. Nych, U. Ognysta, V.G. Nazarenko, O.D. Lavrentovich, Phys. Rev. Lett. 93, 117801 (2004).Google Scholar
  15. 15.
    G. Liao, I.I. Smalyukh, J.R. Kelly, O.D. Lavrentovich, A. Jákli, Phys. Rev. E 72, 031704 (2005).Google Scholar
  16. 16.
    B. Lev, A. Nych, U. Ognysta, S.B. Chernyshuk, V. Nazarenko, M. Škarabot, I. Poberaj, D. Babič, N. Osterman, I. Muševič, Eur. Phys. J. E 20, 215 (2006).Google Scholar
  17. 17.
    I. Muševič, M. Škarabot, D. Babič, N. Osterman, I. Poberaj, V. Nazarenko, A. Nych, Phys. Rev. Lett. 93, 187801 (2004).Google Scholar
  18. 18.
    I. Muševič, M. Škarabot, U. Tkalec, M. Ravnik, S. Žumer, Science 313, 954 (2006).Google Scholar
  19. 19.
    A.B. Nych, U.M. Ognysta, V.M. Pergamenshchik, B.I. Lev, V.G. Nazarenko, I. Muševič, M. Škarabot, O.D. Lavrentovich, Phys. Rev. Lett. 98, 057801 (2007).Google Scholar
  20. 20.
    M. Škarabot, U. Tkalec, I. Muševič, Eur. Phys. J. E 24, 99 (2007).Google Scholar
  21. 21.
    A. Jákli, B. Senyuk, G. Liao, O.D. Lavrentovich, Soft Matter 4, 2471 (2008).Google Scholar
  22. 22.
    C.Y. Young, R. Pindak, N.A. Clark, R.B. Meyer, Phys. Rev. Lett. 40, 773 (1978).Google Scholar
  23. 23.
    C. Rosenblatt, R. Pindak, N.A. Clark, R.B. Meyer, Phys. Rev. Lett. 42, 1220 (1979).Google Scholar
  24. 24.
    A.A. Sonin, Freely Suspended Liquid Crystalline Films (Wiley, New York, 1998).Google Scholar
  25. 25.
    C.C. Huang, Handbook of Liquid Crystals, Vol. 2A (Wiley-VCH, Weinheim, 1998) chapt. 2, p. 441.Google Scholar
  26. 26.
    P. Oswald, P. Pieranski, Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments (Taylor & Francis, Boca Raton, 2005).Google Scholar
  27. 27.
    H. Schüring, R. Stannarius, Langmuir 18, 9735 (2002).Google Scholar
  28. 28.
    H. Schüring, R. Stannarius, Mol. Cryst. Liq. Cryst. 412, 2035 (2004).Google Scholar
  29. 29.
    H. Schüring, R. Stannarius, Lecture Notes in Physics, Vol. 634: Molecules in interaction with surfaces and interfaces, chapter Surfaces and interfaces of free standing smectic films (Springer, Berlin, 2004) p. 337.Google Scholar
  30. 30.
    P. Cluzeau, P. Poulin, G. Joly, H.T. Nguyen, Phys. Rev. E 63, 031702 (2001).Google Scholar
  31. 31.
    P. Cluzeau, G. Joly, H.T. Nguyen, V.K. Dolganov, JETP Lett. 75, 482 (2002).Google Scholar
  32. 32.
    P. Cluzeau, G. Joly, H.T. Nguyen, C. Gor, V.K. Dolganov, Liq. Cryst. 29, 505 (2002).Google Scholar
  33. 33.
    P. Cluzeau, G. Joly, H.T. Nguyen, V.K. Dolganov, JETP Lett. 76, 351 (2002).Google Scholar
  34. 34.
    P. Cluzeau, V. Bonnand, G. Joly, V. Dolganov, H.T. Nguyen, Eur. Phys. J. E 10, 231 (2003).Google Scholar
  35. 35.
    P. Cluzeau, F. Bougrioua, G. Joly, L. Lejček, H.T. Nguyen, Liq. Cryst. 31, 719 (2004).Google Scholar
  36. 36.
    C. Völtz, R. Stannarius, Phys. Rev. E 70, 061702 (2004).Google Scholar
  37. 37.
    C. Völtz, R. Stannarius, Phys. Rev. E 72, 011705 (2005).Google Scholar
  38. 38.
    R. Stannarius, C. Völtz, Phys. Rev. E 72, 032701 (2005).Google Scholar
  39. 39.
    P.V. Dolganov, H.T. Nguyen, G. Joly, V.K. Dolganov, P. Cluzeau, Europhys. Lett. 76, 250 (2006).Google Scholar
  40. 40.
    C. Bohley, R. Stannarius, Eur. Phys. J. E 20, 299 (2006).Google Scholar
  41. 41.
    C. Bohley, R. Stannarius, Eur. Phys. J. E 23, 25 (2007).Google Scholar
  42. 42.
    P.V. Dolganov, H.T. Nguyen, E.I. Kats, V.K. Dolganov, P. Cluzeau, Phys. Rev. E 75, 031706 (2007).Google Scholar
  43. 43.
    P.V. Dolganov, P. Cluzeau, Phys. Rev. E 78, 021701 (2008).Google Scholar
  44. 44.
    M. Conradi, P. Ziherl, A. Šarlah, I. Muševič, Eur. Phys. J. E 20, 231 (2006).Google Scholar
  45. 45.
    C. Bohley, R. Stannarius, Soft Matter 4, 683 (2008).Google Scholar
  46. 46.
    R.B. Meyer, P.S. Pershan, Solid State Commun. 13, 989 (1973).Google Scholar
  47. 47.
    S. Heinekamp, R.A. Pelcovits, E. Fontes, E.Y. Chen, R. Pindak, R.B. Meyer, Phys. Rev. Lett. 52, 1017 (1984).Google Scholar
  48. 48.
    D.R. Link, G. Natale, N.A. Clark, J.E. Maclennan, M. Walsh, S.S. Keast, M.E. Neubert, Phys. Rev. Lett. 82, 2508 (1999).Google Scholar
  49. 49.
    P.O. Andreeva, V.K. Dolganov, C. Gors, R. Fouret, E.I. Kats, Phys. Rev. E 59, 4143 (1999).Google Scholar
  50. 50.
    P.M. Johnson, D.A. Olson, S. Pankratz, C. Bahr, J.W. Goodby, C.C. Huang, Phys. Rev. E 62, 8106 (2000).Google Scholar
  51. 51.
    J.E. Maclennan, Europhys. Lett. 13, 435 (1990).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Institut für Experimentelle PhysikOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations