Advertisement

The European Physical Journal E

, Volume 28, Issue 2, pp 205–210 | Cite as

Influence of gravity on a granular Maxwell’s demon experiment

  • N. Isert
  • C. C. Maaß
  • C. M. AegerterEmail author
Regular Article

Abstract

In the usual description of the granular Maxwell’s demon experiment, where phase separation occurs due to an instability in the densities, the control parameter scales linearly with gravity. In this paper we investigate this scaling experimentally using the properties of diamagnetic particles in strong magnetic-field gradients to reduce and even balance gravitation. We find that phase separation occurs even at vanishingly small gravitational accelerations as is predicted by other theories. This is due to the fact that granular samples tend to form clusters as a result of the inelasticity of the particle collisions. Combining the heat balance of the driven granular gas with the cooling rate and thus the appearance of clustering, we are able to describe the crossover between the limiting cases.

PACS

45.70.-n Granular systems 05.90.+m Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems 51.10.+y Kinetic and transport theory of gases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.M. Jaeger, S.R. Nagel, R.P. Behringer, Rev. Mod. Phys. 68, 1259 (1996).Google Scholar
  2. 2.
    H.J. Schlichting, V. Nordmeier, Math. Naturwiss. Unterr. 49, 323 (1996).Google Scholar
  3. 3.
    J. Eggers, Phys. Rev. Lett. 83, 5322 (1999).Google Scholar
  4. 4.
    D. van der Meer, P. Reimann, K. van der Weele, D. Lohse, Phys. Rev. Lett. 92, 184301 (2004).Google Scholar
  5. 5.
    J.W. Dufty, Phys. Rev. A 13, 2299 (1976).Google Scholar
  6. 6.
    P.K. Haff, J. Fluid Mech. 134, 401 (1983).Google Scholar
  7. 7.
    K. van der Weele, D. van der Meer, M. Versluis, D. Lohse, Europhys. Lett. 53, 328 (2001).Google Scholar
  8. 8.
    D. van der Meer, K. van der Weele, D. Lohse, Phys. Rev. E 63, 061304 (2001).Google Scholar
  9. 9.
    J.J. Brey, F. Moreno, R. Garcya-Rojo, M.J. Ruiz-Montero, Phys. Rev. E 65, 011305 (2001).Google Scholar
  10. 10.
    W. Braunbek, Z. Phys. 121, 764 (1939).Google Scholar
  11. 11.
    M.V. Berry, A.K. Geim, Eur. J. Phys. 18, 307 (1997).Google Scholar
  12. 12.
    C.C. Maass, N. Isert, G. Maret, C.M. Aegerter, Phys. Rev. Lett. 100, 248001 (2008).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of PhysicsKonstanz UniversityKonstanzGermany

Personalised recommendations