The European Physical Journal E

, Volume 27, Issue 4, pp 407–411 | Cite as

Kinetics of layer hopping in a diblock copolymer lamellar phase

  • A. B. Croll
  • M. W. Matsen
  • A. -C. Shi
  • K. Dalnoki-Veress
Regular Article

Abstract

In the ordered state, symmetric diblock copolymers self-assemble into an anisotropic lamellar morphology. The equilibrium thickness of the lamellae is the result of a delicate balance between enthalpic and entropic energies, which can be tuned by controlling the temperature. Here we devise a simple yet powerful method of detecting tiny changes in the lamellar thickness using optical microscopy. From such measurements we characterize the enthalpic interaction as well as the kinetics of molecules as they hop from one layer to the next in order to adjust the lamellar thickness in response to a temperature jump. The resolution of the measurements facilitate a direct comparison to predictions from self-consistent field theory.

PACS

83.80.Uv Block copolymers 68.47.Mn Polymer surfaces 82.35.Jk Copolymers, phase transitions, structure 68.55.J- Morphology of films 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Seul, D. Andelman, Science 267, 476 (1995).Google Scholar
  2. 2.
    F.S. Bates, G.H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).Google Scholar
  3. 3.
    G.H. Fredrickson, F.S. Bates, Annu. Rev. Mater. Sci. 26, 501 (1996).Google Scholar
  4. 4.
    Y. Kang, J. Walish, T. Gorishnyy, E. Thomas, Nature Mater. 6, 956 (2007).Google Scholar
  5. 5.
    D. Constantin, P. Oswald, Phys. Rev. Lett. 85, 4297 (2000).Google Scholar
  6. 6.
    H.C. Gaede, K. Gawrisch, Biophys. J. 85, 1734 (2003).Google Scholar
  7. 7.
    R. Blinc, M. Burgar, M. Luzar, J. Pirš, I. Zupančič, S. Žumer, Phys. Rev. Lett. 33, 1192 (1974).Google Scholar
  8. 8.
    T.P. Lodge, M.C. Dalvi, Phys. Rev. Lett. 75, 657 (1995).Google Scholar
  9. 9.
    G.H. Fredrickson, E. Helfand, J. Chem. Phys. 87, 697 (1987).Google Scholar
  10. 10.
    M. Schulz, A. Khandpur, F.S. Bates, K. Almdal, K. Mortensen, D.A. Hajduk, S.M. Gruner, Macromolecules 29, 2857 (1996).Google Scholar
  11. 11.
    W.M. Maurer, F.S. Bates, T.P. Lodge, K. Almdal, K. Mortensen, G.H. Fredrickson, J. Chem. Phys. 109, 2989 (1998).Google Scholar
  12. 12.
    A.S. Zalusky, R. Olayo-Valles, J.H. Wolf, M.A. Hillmyer, J. Am. Chem. Soc. 124, 12761 (2002).Google Scholar
  13. 13.
    P. Green, R. Limary, Adv. Colloid Interface Sci. 94, 53 (2001).Google Scholar
  14. 14.
    Thermal expansion opposes and contributes less than 10% of the measure effect, i.e. lamellae decrease in thickness with increasing temperature.Google Scholar
  15. 15.
    H. Bodiguel, C. Fretigny, Eur. Phys. J. E. 19, 185 (2006).Google Scholar
  16. 16.
    M.W. Matsen, J. Chem. Phys. 106, 7781 (1997).Google Scholar
  17. 17.
    J.E. Mark (Editor), Physical Properties of Polymers Handbook (American Institute of Physics, 1996).Google Scholar
  18. 18.
    K.H. Dai, E.J. Kramer, Polymer 35, 157 (1994).Google Scholar
  19. 19.
    H. Yokoyama, Mat. Sci. Eng. R. 53, 199 (2006).Google Scholar
  20. 20.
    C.E. Eastman, T.P. Lodge, Macromolecules 27, 5591 (1994).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • A. B. Croll
    • 1
  • M. W. Matsen
    • 2
  • A. -C. Shi
    • 1
  • K. Dalnoki-Veress
    • 1
  1. 1.Department of Physics & Astronomy and the Brockhouse Institute for Materials ResearchMcMaster UniversityHamiltonCanada
  2. 2.Department of MathematicsUniversity of ReadingWhiteknights, ReadingUK

Personalised recommendations