Advertisement

The European Physical Journal E

, Volume 27, Issue 4, pp 379–389 | Cite as

Nano-meter-sized domain formation in lipid membranes observed by small angle neutron scattering

  • T. Masui
  • N. Urakami
  • M. ImaiEmail author
Regular Article

Abstract

Using a contrast matching technique of small angle neutron scattering (SANS), we have investigated a phase separation to liquid-disordered and liquid-ordered phases on ternary small unilamellar vesicles (SUVs) composed of deuterated-saturated, hydrogenated-unsaturated phosphatidylcholine lipids and cholesterol, where the equilibrium size of these domains is constrained to less than 10nm by the system size. Below a miscibility temperature, we observed characteristic scattering profiles with a maximum, indicating the formation of nano-meter-sized domains on the SUVs. The observed profiles can be described by a multi-domain model rather than a mono-domain model. The nano-meter-sized domain is agitated by thermal fluctuations and eventually ruptured, which may result in the multi-domain state. The kinetically trapped nano-meter-sized domains grow to a mono-domain state by decreasing temperature. Furthermore, between the miscibility and disorder-order transition temperature of saturated lipid, the integrated SANS intensity increased slightly, indicating the formation of nano-meter-sized heterogeneity prior to the domain nucleation.

PACS

61.05.fg Neutron scattering (including small-angle scattering) 87.16.D- Membranes, bilayers, and vesicles 87.16.dt Structure, static correlations, domains, and rafts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Simons, E. Ikonen, Nature 387, 569 (1997).Google Scholar
  2. 2.
    D.A. Brown, E. London, Biochem. Biophys. Res. Commun 240, 1 (1997).Google Scholar
  3. 3.
    T.J. McIntosh, Lipid Rafts, 1st edition (Humana Press, Totowa, 2007).Google Scholar
  4. 4.
    J.P. Deans, H. Li, M.J. Polyak, Immunology 107, 167 (2002).Google Scholar
  5. 5.
    M. Edidin, Annu. Rev. Biophys. Biomol. Struct. 32, 257 (2003).Google Scholar
  6. 6.
    L.J. Pike, J. Lipid Res. 44, 655 (2003).Google Scholar
  7. 7.
    B.A. Tsui-Pierchala, M. Encinas, J. Milbrandt, E.M.J. Johnson, Trends Neurosci. 25, 412 (2002).Google Scholar
  8. 8.
    M. Rao, S. Mayor, Biochim. Biophys. Acta 1746, 221 (2005).Google Scholar
  9. 9.
    A. Kusumi, I.K. Honda, K. Suzuki, Traffic 5, 213 (2004).Google Scholar
  10. 10.
    A. Pralle, P. Keller, E.L. Florin, K. Simons, J.K.H. Hörber, J. Cell. Biol. 148, 997 (2000).Google Scholar
  11. 11.
    W.K. Subczynski, A. Kusumi, Biochim. Biophys. Acta 1610, 231 (2003).Google Scholar
  12. 12.
    P. Sharma, R. Varma, R.C. Sarasij, Ira, K. Gousset, G. Krishnamoorthy, M. Rao, S. Mayor, Cell 116, 577 (2004).Google Scholar
  13. 13.
    A. Yethiraji, C. Weisshaar, Biophys. J. 93, 3113 (2007).Google Scholar
  14. 14.
    B.C. Lagerholm, G.E. Weinreb, K. Jacobson, N.L. Thmpson, Annu. Rev. Phys. Chem. 56, 309 (2005).Google Scholar
  15. 15.
    K. Simons, D. Toomre, Nat. Rev. Mol. Cell Biol. 1, 31 (2000).Google Scholar
  16. 16.
    R.G. Anderson, K. Jacobson, Science 296, 1821 (2002).Google Scholar
  17. 17.
    S.L. Veatch, S.L. Keller, Phys. Rev. Lett. 89, 268101 (2002).Google Scholar
  18. 18.
    S.L. Veatch, S.L. Keller, Biophys. J. 85, 3074 (2003).Google Scholar
  19. 19.
    D. Scherfeld, N. Kahya, P. Schwille, Biophys. J. 85, 3758 (2003).Google Scholar
  20. 20.
    C. Dietrich, L.A. Bagatolli, Z.N. Volovyk, N.L. Thompson, M. Levi, K. Jacobson, E. Gratton, Biophys. J. 80, 1417 (2001).Google Scholar
  21. 21.
    S.L. Veatch, S.L. Keller, Biochim. Biophys. Acta 1746, 172 (2005).Google Scholar
  22. 22.
    S.L. Veatch, I.V. Polozov, K. Gawrisch, S.L. Keller, Biophys. J. 86, 2910 (2004).Google Scholar
  23. 23.
    M. Yanagisawa, M. Imai, T. Masui, S. Komura, T. Ohta, Biophys. J. 92, 115 (2007).Google Scholar
  24. 24.
    P. Cicuta, S.L. Keller, S.L. Veatch, J. Phys. Chem. B 111, 3328 (2007).Google Scholar
  25. 25.
    G.W. Feigenson, J.T. Buboltz, Biophys. J. 80, 2775 (2001).Google Scholar
  26. 26.
    J.R. Silvius, Biophys. J. 85, 1034 (2003).Google Scholar
  27. 27.
    J. Pencer, T. Mills, V. Anghel, S. Krueger, R.M. Epand, J. Katsaras, Eur. Phys. J. E 18, 447 (2005).Google Scholar
  28. 28.
    J. Pencer, V.N.P. Anghel, N. Kucerka, J. Katsaras, J. Appl. Cryst. 39, 791 (2006).Google Scholar
  29. 29.
    V.N.P. Anghel, N. Kucerka, J. Pencer, J. Katsaras, J. Appl. Cryst. 40, 513 (2007).Google Scholar
  30. 30.
    J.F. Nagle, S. Tristram-Nagle, Biochim. Biophys. Acta 1469, 159 (2000).Google Scholar
  31. 31.
    W. Knoll, G. Schmidt, K. Ibel, E. Sackmann, Biochem. 24, 5240 (1985).Google Scholar
  32. 32.
    S.S. Berr, M.J. Coleman, R.R.M. Jones, J.S. Johnson, J. Phys. Chem. 90, 6492 (1986).Google Scholar
  33. 33.
    J. Lemmich, K. Mortensen, J.H. Ipsen, T. Honger, R. Bauer, O.G. Mouritsen, Phys. Rev. E 53, 5169 (1996).Google Scholar
  34. 34.
    V.F. Sears, Neutron News 3, 29 (1992).Google Scholar
  35. 35.
    K. Akashi, H. Miyata, H. Itoh, K. Kinosita Jr., Biophys. J. 71, 3242 (1996).Google Scholar
  36. 36.
    H. Iwase, M. Hirai, Mol. Cryst. Liq. Cryst. 367, 661 (2001).Google Scholar
  37. 37.
    T. Otomo, M. Furusaka, S. Satoh, S. Itoh, T. Adachi, S. Shimizu, M. Takeda, J. Phys. Chem. Solids 60, 1579 (1999).Google Scholar
  38. 38.
    Y. Ito, M. Imai, S. Takahashi, Physica B 213&214, 889 (1995).Google Scholar
  39. 39.
    S. Okabe, M. Nagao, T. Karino, S. Watanabe, M. Shibayama, J. Appl. Cryst. 38, 1035 (2005).Google Scholar
  40. 40.
    A. Guinier, G. Fournet, Small Angle Scattering of X-Rays (John Wiley & Sons, New York, 1955).Google Scholar
  41. 41.
    F.M. Moody, Acta Cryst. A 31, 8 (1975).Google Scholar
  42. 42.
    H.B. Stuhrmann, A. Miller, J. Appl. Cryst. 11, 325 (1978).Google Scholar
  43. 43.
    C. Huang, J.T. Mason, Proc. Natl. Acad. Sci. U.S.A. 75, 308 (1978).Google Scholar
  44. 44.
    R.L. Biltonen, D. Lichtenberg, Chem. Phys. Lipids 64, 129 (1993).Google Scholar
  45. 45.
    S. Mabrey, P.I. Mateo, J.M. Sturtevant, Biochem. 17, 2464 (1978).Google Scholar
  46. 46.
    P.J. Davis, K.M.W. Keough, Biochem. 22, 6334 (1983).Google Scholar
  47. 47.
    A. Genz, J.F. Holzwarth, T.Y. Tsong, Biophys. J. 50, 1043 (1986).Google Scholar
  48. 48.
    T.G. Anderson, H.M. McCinnel, Biophys. J. 81, 2774 (2001).Google Scholar
  49. 49.
    H. McConnell, Biophys. J. 88, L23, (2005).Google Scholar
  50. 50.
    S.L. Veach, O. Soubias, S.L. Keller, K. Gawrisch, Proc. Natl. Acad. Sci. U.S.A. 104, 17650 (2007).Google Scholar
  51. 51.
    K. Suzuki, K. Ritchie, E. Kajikawa, T. Fujiwara, A. Kusumi, Biophys. J. 88, 3659 (2005).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Department of PhysicsOchanomizu UniversityTokyoJapan
  2. 2.Department of Physics and Information SciencesYamaguchi UniversityYamaguchiJapan

Personalised recommendations