The European Physical Journal E

, Volume 28, Issue 2, pp 159–164 | Cite as

Gravitational compression of colloidal gels

  • J. J. Liétor-Santos
  • C. Kim
  • P. J. Lu
  • A. Fernández-NievesEmail author
  • D. A. Weitz
Regular Article


We study the compression of depletion gels under the influence of a gravitational stress by monitoring the time evolution of the gel interface and the local volume fraction, \( \phi\), inside the gel. We find \( \phi\) is not constant throughout the gel. Instead, there is a volume fraction gradient that develops and grows along the gel height as the compression process proceeds. Our results are correctly described by a non-linear poroelastic model that explicitly incorporates the \( \phi\) -dependence of the gravitational, elastic and viscous stresses acting on the gel.


82.70.Gg Gels and sols 47.56.+r Flows through porous media 82.70.Dd Colloids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Foffi, C.D. Michele, F. Sciortino, P. Tartaglia, Phys. Rev. Lett. 94, 078301 (2005).Google Scholar
  2. 2.
    N.A.M. Verhaegh, D. Asnaghi, H.N.W. Lerkkerkerker, M. Giglio, L. Cipelletti, Physica A 242, 104 (1997).Google Scholar
  3. 3.
    S. Asakura, F. Oosawa, J. Chem. Phys. 22, 1255 (1954).Google Scholar
  4. 4.
    S. Manley, J.M. Skotheim, L. Mahadevan, D.A. Weitz, Phys. Rev. Lett. 94, 218302 (2005).Google Scholar
  5. 5.
    C. Kim, Y. Liu, A. Kühnle, S. Hess, S. Viereck, T. Danner, L. Mahadevan, D.A. Weitz, Phys. Rev. Lett. 99, 028303 (2007).Google Scholar
  6. 6.
    L. Antl, J. Goodwin, R. Hill, S. Owens, S. Papworth, J.A. Waters, Colloid Surf. 17, 67 (1986).Google Scholar
  7. 7.
    P. Greenspan, E. Mayer, S. Fowler, J. Cell. Biol. 100, 965 (1985).Google Scholar
  8. 8.
    P.J. Lu, J.C. Conrad, H.M. Wyss, A.B. Schofield, D.A. Weitz, Phys. Rev. Lett. 96, 028306 (2006).Google Scholar
  9. 9.
    A. Yethiraj, A. Blaaderen, Nature (London) 421, 513 (2003).Google Scholar
  10. 10.
    M.F. Hsu, E.R. Dufresne, D.A. Weitz, Langmuir 21, 4881 (2005).Google Scholar
  11. 11.
    D.R. Lide, 79th CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1999).Google Scholar
  12. 12.
    J. Brandup, Polymer Handbook (Wiley, New York, 1998).Google Scholar
  13. 13.
    We have performed similar experiments with polystyrene particles in the presence of non-adsorbing polymer. In this case, the system does not cream but rather sediments along the gravitational directionGoogle Scholar
  14. 14.
    R. Buscall, Colloid Surf. 5, 269 (1982).Google Scholar
  15. 15.
    The volume fraction for gelation is taken from lu, which contains the phase diagram for our experimental system.Google Scholar
  16. 16.
    The length scale of a pixel in one of our images is 10 m. We thus expect that the structure of the colloidal suspension should not greatly affect the transmission through the sample. We also assume that contributions arising from the scattering from other parts of the cell are negligible compared to the transmission dhont.Google Scholar
  17. 17.
    J.K.G. Dhont, An Introduction to the Dynamics of Colloids (Elsevier, Amsterdam, 1996).Google Scholar
  18. 18.
    H. Darcy, Les fontaines publiques de la ville de Dijon (Dalmont, Paris, 1856).Google Scholar
  19. 19.
    A.D. Dinsmore, V. Prasad, I. Wong, D.A. Weitz, Phys. Rev. Lett. 96, 185502 (2007).Google Scholar
  20. 20.
    In the initial compression stages, the gel does not change appreciably its volume fraction. As a result, the elastic stress gradient in equation (balance) can be neglected. The initial stages are thus determined by the balance between the gravitational and frictional stress gradients. This is used to determine the initial permeability of the gel from the slope of the interface evolution with time. See manley for further details.Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • J. J. Liétor-Santos
    • 1
  • C. Kim
    • 1
  • P. J. Lu
    • 1
  • A. Fernández-Nieves
    • 1
    Email author
  • D. A. Weitz
    • 1
  1. 1.Department of Physics and HSEASHarvard UniversityCambridgeUSA

Personalised recommendations