The European Physical Journal E

, Volume 27, Issue 4, pp 365–373 | Cite as

The role of the amorphous phase in the re-crystallization process of cold-crystallized poly(ethylene terephthalate)

  • M. Pieruccini
  • A. Flores
  • U. Nöchel
  • G. Di Marco
  • N. Stribeck
  • F. J. Baltá Calleja
Regular Article


The process of re-crystallization in poly(ethylene terephthalate) is studied by means of X-ray diffraction (SAXS and WAXS) and dynamical mechanical thermal analysis. Samples cold-crystallized for 9h at the temperatures T c = 100 fcir#circ;C and T c = 160 fcir#circ;C, i.e. in the middle of the \( \alpha\) relaxation region and close to its upper bound, respectively, are analyzed. During heating from room temperature, a structural rearrangement of the stacks is always found at T rT c + 20 fcir#circ;C. This process is characterized by a decrease of the linear crystallinity, irrespective of Tc; on the other hand, the WAXS crystallinity never increases with T below Tc+30fcir#circ;C. The lamellar thickness in the low-Tc sample decreases significantly after the structural transition, whereas in the high-Tc sample the lamellar thickness remains almost unchanged. In both, high- and low-Tc, the interlamellar thickness increases above Tr. Moreover, the high-Tc sample shows a lower rate of decrease of the mechanical performance with increasing T as the threshold Tr is crossed. This result is interpreted in terms of the formation of rigid amorphous domains where the chains are partially oriented. The presence of these domains would determine i) the stabilization of the crystalline lamellae from the thermodynamic point of view and ii) the increase of the elastic modulus of the amorphous interlamellar regions. This idea is discussed by resorting to a phase diagram. An estimation of the chemical-potential increase of the interlamellar amorphous regions, due to the enhancement of the structural constraints hindering segmental mobility, is offered. Finally, previous calculations developed within the framework of the Gaussian chain model (F.J. Baltá Calleja et al., Phys. Rev. B 75, 224201 (2007)) are used here to estimate the degree of chain orientation induced by the structural transition of the stacks.


61.41.+e Polymers, elastomers, and plastics 61.05.cp X-ray diffraction 64.70.Nd Structural transitions in nanoscale materials 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1998).Google Scholar
  2. 2.
    F.J. Baltá Calleja, A. Flores, G. Di Marco, M. Pieruccini, Phys. Rev. B 75, 224201 (2007).Google Scholar
  3. 3.
    M. Pieruccini, T.A. Ezquerra, M. Lanza, J. Chem. Phys. 127, 104903 (2007).Google Scholar
  4. 4.
    G. Adam, J.H. Gibbs, J. Chem. Phys. 43, 139 (1965).Google Scholar
  5. 5.
    A. Flores, M. Pieruccini, U. Nöchel, N. Stribeck, F.J. Baltá Calleja, Polymer 49, 965 (2008).Google Scholar
  6. 6.
    R.K. Verma, B.S. Hsiao, Trends Polym. Sci. 4, 312 (1996).Google Scholar
  7. 7.
    A.A. Minakov, D.A. Mordvintsev, C. Schick, Polymer 45, 3755 (2004).Google Scholar
  8. 8.
    B. Wunderlich, Progr. Polym. Sci. 28, 383 (2003).Google Scholar
  9. 9.
    R. Androsch, B. Wunderlich, Polymer 46, 12556 (2005).Google Scholar
  10. 10.
    W. Ruland, Colloid Polym. Sci. 255, 417 (1977).Google Scholar
  11. 11.
    N. Stribeck, Colloid Polym. Sci. 280, 254 (2002).Google Scholar
  12. 12.
    J.J. Hermans, Rec. Trav. Chim. Pais-Bas 63, 211 (1944).Google Scholar
  13. 13.
    N. Stribeck, X-ray Scattering of Soft Matter (Springer, Heidelberg 2007) p. 179.Google Scholar
  14. 14.
    G.C. Alfonso, E. Pedemonte, L. Ponzetti, Polymer 20, 104 (1979).Google Scholar
  15. 15.
    A. Bartolotta, G. Di Marco, F. Farsaci, M. Lanza, M. Pieruccini, Polymer 44, 5771 (2003).Google Scholar
  16. 16.
    G. Strobl, Prog. Polym. Sci. 31, 398 (2006).Google Scholar
  17. 17.
    G. Strobl, T.Y. Cho, Eur. Phys. J. E 23, 55 (2007).Google Scholar
  18. 18.
    M. Pieruccini, G. Di Marco, M. Lanza, J. Appl. Phys. 80, 1851 (1996).Google Scholar
  19. 19.
    T. Albrecht, G. Strobl, Macromolecules 28, 5827 (1995).Google Scholar
  20. 20.
    J. Brandrup, E.H. Immergut, E.A. Grulke (Editors), Polymer Handbook, 4th edition (Wiley, New York, 1999).Google Scholar
  21. 21.
    M. Imai, K. Kaji, T. Kanaya, Y. Sakai, Physica B 213, 214, 718 (1995).Google Scholar
  22. 22.
    C. Schick, E. Donth, Phys. Scr. 43, 423 (1991).Google Scholar
  23. 23.
    T.Y. Cho, B. Heck, G. Strobl, Chin. J. Polym. Sci. 25, 83 (2007).Google Scholar
  24. 24.
    V.B.F. Mathot, Thermal characterization of states of matter, in Calorimetry and Thermal Analysis of Polymers, edited by V.B.F. Mathot (Hanser, Munich, 1994) p. 105.Google Scholar
  25. 25.
    M. Kattan, E. Dargent, J. Grenet, Polymer 43, 1399 (2002).Google Scholar
  26. 26.
    C. Schick, A. Wurm, A. Mohamed, Colloid Polym. Sci. 279, 800 (2001).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • M. Pieruccini
    • 1
  • A. Flores
    • 2
  • U. Nöchel
    • 3
  • G. Di Marco
    • 1
  • N. Stribeck
    • 3
  • F. J. Baltá Calleja
    • 2
  1. 1.CNRIstituto per i Processi Chimico-Fisici, Salita Sperone Contrada PapardoMessinaItaly
  2. 2.Instituto de Estructura de la Materia, CSICMadridSpain
  3. 3.Institut für Technische und Makromolekulare ChemieUniversität HamburgHamburgGermany

Personalised recommendations