Advertisement

The European Physical Journal E

, Volume 28, Issue 2, pp 139–146 | Cite as

Dynamical density functional theory for colloidal dispersions including hydrodynamic interactions

  • M. RexEmail author
  • H. Löwen
Regular Article

Abstract

A dynamical density functional theory (DDFT) for translational Brownian dynamics is derived which includes hydrodynamic interactions. The theory reduces to the simple Brownian DDFT proposed by Marconi and Tarazona (U. Marini Bettolo Marconi and P. Tarazona, J. Chem. Phys. 110, 8032 (1999); J. Phys.: Condens. Matter 12, A413 (2000)) when hydrodynamic interactions are neglected. The derivation is based on Smoluchowski’s equation for the time evolution of the probability density with pairwise hydrodynamic interactions. The theory is applied to hard-sphere colloids in an oscillating spherical optical trap which switches periodically in time from a stable confining to an unstable potential. Rosenfeld’s fundamental measure theory for the equilibrium density functional is used and hydrodynamics are incorporated on the Rotne-Prager level. The results for the time-dependent density profiles are compared to extensive Brownian dynamics simulations which are performed on the same Rotne-Prager level and excellent agreement is obtained. It is further found that hydrodynamic interactions damp and slow the dynamics of the confined colloid cluster in comparison to the same situation with neglected hydrodynamic interactions.

PACS

82.70.Dd Colloids 61.20.Ja Computer simulation of liquid structure 64.70.D- Solid-liquid transitions 05.70.Ln Nonequilibrium and irreversible thermodynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.N. Pusey, in Liquids, Freezing and Glass Transition, edited by J.P. Hansen, D. Levesque, J. Zinn-Justin (North-Holland, Amsterdam, 1991).Google Scholar
  2. 2.
    E. Allahyarov, H. Löwen, Phys. Rev. E 63, 041403 (2001).Google Scholar
  3. 3.
    E. Allahyarov, H. Löwen, J. Phys.: Condens. Matter 13, L277 (2001).Google Scholar
  4. 4.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics, 1st ed. (Clarendon Press, Oxford, 1986).Google Scholar
  5. 5.
    J.K.G. Dhont, An Introduction to Dynamics of Colloids (Elsevier Science, Amsterdam, 1996).Google Scholar
  6. 6.
    G. Nägele, J.K.G. Dhont, J. Chem. Phys. 108, 9566 (1998).Google Scholar
  7. 7.
    G. Nägele, J. Bergenholtz, J. Chem. Phys. 108, 9893 (1998).Google Scholar
  8. 8.
    G. Nägele, J. Bergenholtz, J.K.G. Dhont, J. Chem. Phys. 110, 7037 (1999).Google Scholar
  9. 9.
    S. Harris, J. Phys. A: Math. Gen. 9, 1895 (1976).Google Scholar
  10. 10.
    B.U. Felderhof, J. Phys. A: Math. Gen. 11, 929 (1978).Google Scholar
  11. 11.
    G. Nägele, J. Phys.: Condens. Matter 15, S407 (2003).Google Scholar
  12. 12.
    B. Cichocki, M.L. Ekiel-Jezewska, P. Szymczak, E. Wajnryb, J. Chem. Phys. 117, 1231 (2002).Google Scholar
  13. 13.
    R. Pesché, G. Nägele, Europhys. Lett. 51, 584 (2000).Google Scholar
  14. 14.
    R.A. Lionberger, W.B. Russel, J. Rheol. 41, 399 (1997).Google Scholar
  15. 15.
    J.Z. Wu, AIChe J. 52, 1169 (2006).Google Scholar
  16. 16.
    H. Löwen, Phys. Rep. 237, 249 (1994).Google Scholar
  17. 17.
    Y. Singh, Phys. Rep. 207, 351 (1991).Google Scholar
  18. 18.
    Y. Rosenfeld, Phys. Rev. Lett. 63, 980 (1989).Google Scholar
  19. 19.
    Y. Rosenfeld, M. Schmidt, H. Löwen, P. Tarazona, Phys. Rev. E 55, 4245 (1997).Google Scholar
  20. 20.
    A.J. Archer, J. Phys.: Condens. Matter 17, 1405 (2005).Google Scholar
  21. 21.
    N. Grewe, W. Klein, J. Math. Phys. 18, 1729Google Scholar
  22. 22.
    C.N. Likos, A. Lang, M. Watzlawek, H. Löwen, Phys. Rev. E 63, 031206 (2001).Google Scholar
  23. 23.
    U.M.B. Marconi, P. Tarazona, J. Phys.: Condens. Matter 12, A413 (2000).Google Scholar
  24. 24.
    U.M.B. Marconi, P. Tarazona, J. Chem. Phys. 110, 8032 (1999).Google Scholar
  25. 25.
    A.J. Archer, R. Evans, J. Chem. Phys. 121, 4246 (2004).Google Scholar
  26. 26.
    F. Penna, J. Dzubiella, P. Tarazona, Phys. Rev. E 68, 061407 (2003).Google Scholar
  27. 27.
    M. Rex, C.N. Likos, H. Löwen, J. Dzubiella, Mol. Phys. 104, 527 (2006).Google Scholar
  28. 28.
    M. Rex, H. Löwen, C.N. Likos, Phys. Rev. E 72, 021404 (2005).Google Scholar
  29. 29.
    G.K.L. Chan, R. Finken, Phys. Rev. Lett. 94, 183001 (2005).Google Scholar
  30. 30.
    A.J. Archer, J. Phys.: Condens. Matter 18, 5617 (2006).Google Scholar
  31. 31.
    A.J. Archer, M. Rauscher, J. Phys. A: Math. Gen. 37, 9325 (2004).Google Scholar
  32. 32.
    C.P. Royall, J. Dzubiella, M. Schmidt, A.V. Blaaderen, Phys. Rev. Lett. 98, 188304 (2007).Google Scholar
  33. 33.
    M. Rex, H. Löwen, arXiv:0803.2009 [physics].Google Scholar
  34. 34.
    G. Nägele, Lecture notes (Institut of Fundamental Technological Research, Polish Academy of Science, Warsaw, Poland, 2004).Google Scholar
  35. 35.
    R. Evans, Adv. Phys. 28, 143 (1979).Google Scholar
  36. 36.
    J.P. Hansen, I.R. MacDonald, Theory of Simple Liquids, 3rd ed. (Academic, London, 2006).Google Scholar
  37. 37.
    S. Dietrich, A. Haase, Phys. Rep. 260, 1 (1995).Google Scholar
  38. 38.
    B. Götzelmann, A. Haase, S. Dietrich, Phys. Rev. E 53, 3456 (1996).Google Scholar
  39. 39.
    A. Trokhymchuk, I. Nezbeda, J. Jirsák, D. Henderson, J. Chem. Phys. 123, 024501 (2005).Google Scholar
  40. 40.
    J. Dzubiella, C.N. Likos, J. Phys.: Condens. Matter 15, L147 (2003).Google Scholar
  41. 41.
    A. González, J.A. White, F.L. Román, S. Velasco, R. Evans, Phys. Rev. Lett. 79, 2466 (1997).Google Scholar
  42. 42.
    A. González, J.A. White, F.L. Román, R. Evans, J. Chem. Phys. 109, 3637 (1998).Google Scholar
  43. 43.
    J. Rotne, S. Prager, J. Chem. Phys. 50, 4831 (1969).Google Scholar
  44. 44.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann, Boston, 1991).Google Scholar
  45. 45.
    M.P. Allen, D.J. Tildesley (Editors), Computer Simulation of Liquids (Clarendon Press Oxford, Oxford, 1989).Google Scholar
  46. 46.
    D.L. Ermak, J.A. McCammon, J. Chem. Phys. 69, 1352 (1978).Google Scholar
  47. 47.
    H. Hayakawa, K. Ichiki, Phys. Rev. E 51, R3815 (1995).Google Scholar
  48. 48.
    A. Chowdhury, B.J. Ackerson, N.A. Clark, Phys. Rev. Lett. 55, 833 (1985).Google Scholar
  49. 49.
    Z.T. Nemeth, H. Löwen, Phys. Rev. E 56, 6824 (1999).Google Scholar
  50. 50.
    C. Lutz, M. Reichert, H. Stark, C. Bechinger, Europhys. Lett. 74, 719 (2006).Google Scholar
  51. 51.
    M. Rex, H. Löwen, Phys. Rev. E 75, 051402 (2007).Google Scholar
  52. 52.
    M. Tokuyama, Rep. Inst. Fluid Sci. 19, 7 (2007).Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  1. 1.Institut für Theoretische Physik II: Weiche MaterieHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany

Personalised recommendations