The European Physical Journal E

, Volume 26, Issue 4, pp 417–425 | Cite as

Evidence of glass transition in thin films of maleic anhydride derivatives: Effect of the surfactant coadsorption



The glass transition temperature of poly (maleic anhydride-alt-1-octadecen) and poly (styreneco-maleic anhydride) cumene-terminated thin films has been measured by mechanical relaxation of Langmuir films of these polymers. The dynamical properties show glass-like features (non-Arrhenius relaxation times and non-Debye mechanical response) interpreted by the coupling model. The glass transition temperature values determined by a mechanical relaxation experiment (step-compression) agree very well with those obtained by surface potential measurements. It is found that the glass transition temperature values in thin films decrease by about 100K as compared with those corresponding to the bulk polymers. The coadsorption of the water-insoluble surfactant DODAB decreases the glass transition temperature.


68.15.+e Liquid thin films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R.A.L. Jones, R.W. Richards, Polymers at Surfaces and Interfaces (Cambridge University Press, UK, 1999).Google Scholar
  2. 2.
    K.L. Ngai, Eur. Phys. J. E 8, 225 (2002).CrossRefGoogle Scholar
  3. 3.
    Y.M. Grohens Brogly, C. Labbe, M.O. David, J. Schultz, Langmuir 14, 2929 (1998).CrossRefGoogle Scholar
  4. 4.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Stevens, J.R. Dutcher, Phys. Rev. Lett. 77, 2002 (1996).CrossRefADSGoogle Scholar
  5. 5.
    J.L. Keddie, R.A.L. Jones, R.A. Cory, Europhys. Lett. 27, 59 (1994).CrossRefADSGoogle Scholar
  6. 6.
    K.L. Ngai, J. Phys.: Condens. Matter 11, A119 (1999).CrossRefADSGoogle Scholar
  7. 7.
    K.L. Ngai, J. Non-Cryst. Solids 275, 7 (2000).CrossRefADSGoogle Scholar
  8. 8.
    J.A. Forrest, K. Dalnoki-Veress, Adv. Colloid Interface Sci. 94, 167 (2001).CrossRefGoogle Scholar
  9. 9.
    K. Dalnoki-Veress, J.A. Forrest, C. Murria, C. Gigault, J.R. Dutcher, Phys. Rev. E 63, 031801 (2001).Google Scholar
  10. 10.
    J.A. Forrest, K. Dalnoki-Veress, J.R. Dutcher, Phys. Rev. E. 56, 5705 (1998).CrossRefADSGoogle Scholar
  11. 11.
    L. Cristofoline, P. Cicuta, M.P. Fontana, J. Phys.: Condens. Matter 15, S1031 (2003).Google Scholar
  12. 12.
    H.A. Hilles, F. Ortega, R.G. Rubio, F. Monroy, Phys. Rev. Lett. 92, 55503 (2004).CrossRefGoogle Scholar
  13. 13.
    J.A. Forrest, J. Mattsson, L. Börjesson, Eur. Phys. J. E 8, 129 (2002).CrossRefGoogle Scholar
  14. 14.
    V. Zaporojtchenko, T. Strunskus, J. Erichsen, F. Faupel, Macromolecules 34, 1125 (2000).CrossRefGoogle Scholar
  15. 15.
    T. Kajiyama, K. Tanaka, A. Takahara, Polymer 39, 4665 (1998).CrossRefGoogle Scholar
  16. 16.
    B. Böddeker, H. Teichler, Phys. Rev. E 59, 1948 (1999).CrossRefADSGoogle Scholar
  17. 17.
    F. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solutions, 2nd edition (J. Wiley & Sons Ltd, Chichester, 2003).Google Scholar
  18. 18.
    C. Monteux, M.-F. Llauro, D. Baigl, C.E. Williams, O. Anthony, V. Bergeron, Langmuir 20, 5358 (2004).CrossRefGoogle Scholar
  19. 19.
    B.A. Noskov, S.N. Nuzhnov, G. Loglio, R. Miller, Macromolecules 37, 2519 (2004).CrossRefGoogle Scholar
  20. 20.
    J. Penfold, I. Tucker, R.K. Thomas, J. Zhang, Langmuir 21, 10061 (2005).CrossRefGoogle Scholar
  21. 21.
    H. Ritacco, A. Cagna, D. Langevin, Colloids Surf. A 282, 203 (2006).CrossRefGoogle Scholar
  22. 22.
    B.A. Noskov, G. Loglio, S.-Y. Lin, R. Miller, J. Colloid Interface Sci. 301, 386 (2006).CrossRefGoogle Scholar
  23. 23.
    J. Penfold, I. Tucker, R.K. Thomas, D.J.F. Taylor, X.L. Zhang, C. Bell, C. Breward, P. Howell, Langmuir 23, 3128 (2007).CrossRefGoogle Scholar
  24. 24.
    C. Delgado, M.D. Merchán, M.M. Velázquez, J. Phys. Chem. B 112, 687 (2008).CrossRefGoogle Scholar
  25. 25.
    V. Morais, M. Encinar, M.G. Prolongo, R.G. Rubio, Polymer 47, 2349 (2006).CrossRefGoogle Scholar
  26. 26.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, New York, 1979).Google Scholar
  27. 27.
    H. Hilles, M. Sferrazza, F. Monroy, F. Ortega, R.G. Rubio, J. Chem. Phys. 125, 074706 (2006).Google Scholar
  28. 28.
    R. Ober, R. Vilanove, Colloid Polym. Sci. 255, 1067 (1977).CrossRefGoogle Scholar
  29. 29.
    S. Li, C.J. Clarke, Thin Solid Films 354, 136 (1999).CrossRefADSGoogle Scholar
  30. 30.
    A.E. Hosoi, D. Kogan, C.E. Deveraux, A.J. Bernoff, S.M. Baker, Phys. Rev. Lett. 95, 037801 (2005).Google Scholar
  31. 31.
    K.L. Ngai, Adv. Colloid Interface Sci. 64, 1 (1996).CrossRefGoogle Scholar
  32. 32.
    K.L. Ngai, C. Cramer, T. Saatkamp, K. Funke, Non-Equilibrium Phenomena in Supercooled Fluids, Glasses and Amorphous Materials, edited by M. Giordano, D. Leporini, M.P. Tosi (World Scientific, Singapore, 1996).Google Scholar
  33. 33.
    K.L. Ngai, A.K. Rizos, D.J. Plazek, J. Non-Cryst. Solids 235, 435 (1998).CrossRefADSGoogle Scholar
  34. 34.
    K.L. Ngai, C.M. Roland, Macromolecules 26, 6824 (1993).CrossRefGoogle Scholar
  35. 35.
    R.W. Rendell, K.L. Ngai, J. Non-Cryst. Solids 131, 942 (1991).CrossRefGoogle Scholar
  36. 36.
    R. Zorn, A. Arbe, J. Colmenero, D. Richter, U. Buchenau, Phys. Rev. E. 52, 781 (1995).CrossRefADSGoogle Scholar
  37. 37.
    K.L. Ngai, R.W. Rendell, Supercooled Liquids, Advances and Novel Applications, edited by J.T. Fourkas, D. Kivelson, U. Mohanty, K.A. Nelson, ACS Symp. Ser. 676 (American Chemical Society, Washington DC, 1997), p. 45.Google Scholar
  38. 38.
    G.D. Smith, W. Paul, D.Y. Yoon, A. Zirkel, J. Hendricks, D. Richter, J. Chem. Phys. 107, 3645 (1997).CrossRefGoogle Scholar
  39. 39.
    C.L. Jackson, G.B. McKenna, J. Chem. Phys. 93, 9002 (1991).CrossRefADSGoogle Scholar
  40. 40.
    J. Erichsen, T. Shiferaw, V. Zaporojtchenko, F. Faupel, Eur. Phys. J. E 24, 243 (2007).CrossRefGoogle Scholar
  41. 41.
    D.M. Taylor, Adv. Colloid Interface Sci. 87, 183 (2000).CrossRefADSGoogle Scholar
  42. 42.
    M.M. Velázquez, F. Ortega, F. Monroy, R.G. Rubio, S. Pegiadou, L. Pérez, M.R. Infante, J. Colloid Interface Sci. 283, 144 (2005).CrossRefGoogle Scholar
  43. 43.
    T. Kerle, Z. Lin, H.C. Kim, T.P. Russel, Macromolecules 35, 3484 (2001).CrossRefGoogle Scholar
  44. 44.
    J.H. Teichroeb, J.A. Forrest, Phys. Rev. Lett. 91, 016104 (2003).Google Scholar
  45. 45.
    X. Châtellier, D. Andelman, J. Phys. Chem. 100, 9444 (1996).CrossRefGoogle Scholar
  46. 46.
    J. Engelking, H. Menzel, Eur. Phys. J. E 5, 87 (2001).CrossRefGoogle Scholar
  47. 47.
    A.M. Gonçalves da Silva, R.S. Romao, A. Lucero Caro, J.M. Rodríguez Patino, J. Colloid Interface Sci. 270, 417 (2004).CrossRefGoogle Scholar
  48. 48.
    A. Klebanau, N. Kliabanova, F. Ortega, F. Monroy, R.G. Rubio, V. Starov, J. Phys. Chem. B 109, 18316 (2005).CrossRefGoogle Scholar
  49. 49.
    M. Safouane, R. Miller, H. Möhwald, J. Colloid Interface Sci. 292, 86 (2005).CrossRefGoogle Scholar
  50. 50.
    A.M. Gonçalves da Silva, M.I. Viseu, C.S. Campos, T. Rechina, Thin Solid Films 320, 236 (1998).CrossRefGoogle Scholar
  51. 51.
    N. Cuviller, R. Bernon, J.C. Doux, P. Merzeau, C. Mingotaud, P. Delhaés, Langmuir 14, 5573 (1998).CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Departamento de Química Física, Facultad de Ciencias QuímicasUniversidad de SalamancaSalamancaSpain

Personalised recommendations