Advertisement

The European Physical Journal E

, Volume 27, Issue 1, pp 107–114 | Cite as

Coefficient of tangential restitution for viscoelastic spheres

  • T. Schwager
  • V. Becker
  • T. PöschelEmail author
Article

Abstract

The collision of frictional granular particles may be described by an interaction force whose normal component is that of viscoelastic spheres while the tangential part is described by the model by Cundall and Strack (Géotechnique 29, 47 (1979)) being the most popular tangential collision model in Molecular Dynamics simulations. Albeit being a rather complicated model, governed by 5 phenomenological parameters and 2 independent initial conditions, we find that it is described by 3 independent parameters only. Surprisingly, in a wide range of parameters the corresponding coefficient of tangential restitution, εt, is well described by the simple Coulomb law with a cut-off at εt = 0. A more complex behavior of the coefficient of restitution as a function on the normal and tangential components of the impact velocity, g n and g t , including negative values of ε n , is found only for very small ratio g t /g n . For the analysis presented here we neglect dissipation of the interaction in normal direction.

PACS

45.70.-n Granular systems 45.50.Tn Collisions 45.50.-j Dynamics and kinematics of a particle and a system of particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Hertz, Reine Angew. Math. 92, 156 (1882).Google Scholar
  2. 2.
    N.V. Brilliantov, F. Spahn, J.M. Hertzsch, T. Pöschel, Phys. Rev. E 53, 5382 (1996).CrossRefADSGoogle Scholar
  3. 3.
    T. Schwager, T. Pöschel, Phys. Rev. E 57, 650 (1998).CrossRefADSGoogle Scholar
  4. 4.
    R. Ramírez, T. Pöschel, N.V. Brilliantov, T. Schwager, Phys. Rev. E 60, 4465 (1999).CrossRefADSGoogle Scholar
  5. 5.
    T. Schwager, T. Pöschel, cond-mat/arXiv:0708.1434.Google Scholar
  6. 6.
    J. Schäfer, S. Dippel, D.E. Wolf, J. Phys. I 6, 5 (1996).CrossRefGoogle Scholar
  7. 7.
    P.A. Cundall, O.D.L. Strack, Géotechnique 29, 47 (1979).CrossRefGoogle Scholar
  8. 8.
    Y. Zhang, C.S. Campbell, J. Fluid Mech. 237, 541 (1992).CrossRefADSGoogle Scholar
  9. 9.
    J. Lee, Phys. Rev. E 49, 281 (1994).CrossRefADSGoogle Scholar
  10. 10.
    G.H. Ristow, H.J. Herrmann, Phys. Rev. E 50, R5 (1994).CrossRefADSGoogle Scholar
  11. 11.
    L. Brendel, S. Dippel, Lasting Contacts in Molecular Dynamics Simulations, in Physics of Dry Granular Materials, edited by H.J. Herrmann, J.P. Hovi, S. Luding, NATO ASI Ser. E, Vol. 350 (Kluwer, Dordrecht, 1998) pp. 313–318.Google Scholar
  12. 12.
    D. Ertaş, G.S. Grest, T.C. Halsey, D. Levine, L.E. Silbert, Europhys. Lett. 56, 214 (2001).CrossRefADSGoogle Scholar
  13. 13.
    D. Volfson, A. Kudrolli, L.S. Tsimring, Phys. Rev. E 70, 051312 (2004).CrossRefADSGoogle Scholar
  14. 14.
    R. García-Rojo, F. Alonso-Marroquín, H.J. Herrmann, Phys. Rev. E 72, 041302 (2005).CrossRefADSGoogle Scholar
  15. 15.
    F. Alonso-Marroquín, H.J. Herrmann, J. Eng. Math. 52, 11 (2005).zbMATHGoogle Scholar
  16. 16.
    L.S. Tsimring, D. Volfson, Modeling of impact cratering in granular media, in Powders and Grains-2005 (Balkema, Rotterdam, 2005).Google Scholar
  17. 17.
    T. Pöschel, H.J. Herrmann, Physica A 198, 441 (1993).CrossRefADSGoogle Scholar
  18. 18.
    H. Kuninaka, H. Hayakawa, Phys. Rev. Lett. 93, 154301 (2004).CrossRefADSGoogle Scholar
  19. 19.
    V. Becker, T. Schwager, T. Pöschel, Phys. Rev. E 77, 011304 (2008).CrossRefADSGoogle Scholar
  20. 20.
    O.R. Walton, R.L. Braun, J. Rheol. 30, 949 (1986).CrossRefADSGoogle Scholar
  21. 21.
    S. Luding, Phys. Rev. E 52, 4442 (1995).CrossRefADSGoogle Scholar
  22. 22.
    O. Herbst, M. Huthmann, A. Zippelius, Granular Matter 2, 211 (2000).CrossRefGoogle Scholar
  23. 23.
    O. Herbst, R. Cafiero, A. Zippelius, H.J. Herrmann, S. Luding, Phys. Fluids 17, 107102 (2005).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.CharitéBerlinGermany
  2. 2.Physikalisches InstitutUniversität BayreuthBayreuthGermany

Personalised recommendations