The European Physical Journal E

, Volume 26, Issue 4, pp 361–368 | Cite as

Simulating (electro)hydrodynamic effects in colloidal dispersions: Smoothed profile method

Article

Abstract

Previously, we have proposed a direct simulation scheme for colloidal dispersions in a Newtonian solvent (Phys. Rev. E 71, 036707 (2005)). An improved formulation called the “Smoothed Profile (SP) method” is presented here in which simultaneous time-marching is used for the host fluid and colloids. The SP method is a direct numerical simulation of particulate flows and provides a coupling scheme between the continuum fluid dynamics and rigid-body dynamics through utilization of a smoothed profile for the colloidal particles. Moreover, the improved formulation includes an extension to incorporate multi-component fluids, allowing systems such as charged colloids in electrolyte solutions to be studied. The dynamics of the colloidal dispersions are solved with the same computational cost as required for solving non-particulate flows. Numerical results which assess the hydrodynamic interactions of colloidal dispersions are presented to validate the SP method. The SP method is not restricted to particular constitutive models of the host fluids and can hence be applied to colloidal dispersions in complex fluids.

PACS

47.11.-j Computational methods in fluid dynamics 82.70.-y Disperse systems; complex fluids 82.20.Wt Computational modeling; simulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, 2nd edition (Martinus Nijhoff, Dordrecht, 1983).Google Scholar
  2. 2.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Butterworth-Heinemann, London, 1991).Google Scholar
  3. 3.
    W.B. Russel, D.A. Saville, W.R. Schowalter, Colloidal Dispersions (Cambridge University Press, Cambridge, UK, 1989).Google Scholar
  4. 4.
    C.N. Likos, Phys. Rep. 348, 267 (2001).CrossRefADSGoogle Scholar
  5. 5.
    J.F. Brady, G. Bossis, Annu. Rev. Fluid Mech. 20, 111 (1988).CrossRefADSGoogle Scholar
  6. 6.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999).CrossRefADSGoogle Scholar
  7. 7.
    H. Tanaka, T. Araki, Phys. Rev. Lett. 85, 1338 (2000).CrossRefADSGoogle Scholar
  8. 8.
    T. Kajishima, S. Takiguchi, H. Hamasaki, Y. Miyake, JSME Int. J., Ser. B 44, 526 (2001).CrossRefGoogle Scholar
  9. 9.
    H.H. Hu, N.A. Patankar, M.Y. Zhu, J. Comput. Phys. 192, 427 (2001).CrossRefADSMathSciNetGoogle Scholar
  10. 10.
    R. Glowinski, T.W. Pan, T.I. Hesla, D.D. Joseph, J. Périaux, J. Comput. Phys. 192, 363 (2001).CrossRefADSGoogle Scholar
  11. 11.
    A.J.C. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001).MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    J.T. Padding, A.A. Louis, Phys. Rev. Lett. 93, 220601 (2004).Google Scholar
  13. 13.
    M.E. Cates, K. Stratford, R. Adhikari, P. Stansell, J.C. Desplat, I. Pagonabarraga, A.J. Wagner, J. Phys.: Condens. Matter 16, S3903 (2004).CrossRefADSGoogle Scholar
  14. 14.
    Y.W. Kim, R.R. Netz, Europhys. Lett. 72, 837 (2005).CrossRefADSGoogle Scholar
  15. 15.
    T. Yamaue, M. Sasaki, T. Taniguchi, Multi-Phase Dynamics Program “Muffin” User’s Manual, http://octa.jp (2005).
  16. 16.
    V. Lobaskin, B. Dünweg, C. Holm, J. Phys.: Condens. Matter 16, S4063 (2004).CrossRefADSGoogle Scholar
  17. 17.
    A. Chatterji, J. Horbach, J. Chem. Phys. 122, 184903 (2005).Google Scholar
  18. 18.
    F. Capuani, I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 121, 973 (2004).CrossRefADSGoogle Scholar
  19. 19.
    F. Capuani, I. Pagonabarraga, D. Frenkel, J. Chem. Phys. 124, 124903 (2006).Google Scholar
  20. 20.
    Y. Nakayama, R. Yamamoto, Phys. Rev. E 71, 036707 (2005).Google Scholar
  21. 21.
    L.D. Landau, E.M. Lifshitz, Fluid Mechanics (Pergamon Press, London, 1959).Google Scholar
  22. 22.
    C.S. Peskin, D.M. McQueen, J. Comput. Phys. 81, 372 (1989).MATHCrossRefADSMathSciNetGoogle Scholar
  23. 23.
    J. Dzubiella, H. Löwen, C.N. Likos, Phys. Rev. Lett. 91, 248301 (2003).Google Scholar
  24. 24.
    H. Kodama, K. Takeshita, T. Araki, H. Tanaka, J. Phys.: Condens. Matter 16, L115 (2004).CrossRefADSGoogle Scholar
  25. 25.
    A.A. Zick, G.M. Homsy, J. Fluid Mech. 115, 13 (1982).MATHCrossRefADSGoogle Scholar
  26. 26.
    H. Hasimoto, J. Fluid Mech. 5, 317 (1959).MATHCrossRefADSMathSciNetGoogle Scholar
  27. 27.
    D.J. Jeffrey, Y. Onishi, J. Fluid Mech. 139, 261 (1984).MATHCrossRefADSGoogle Scholar
  28. 28.
    R.C. Ball, J.R. Melrose, Physica A 247, 444 (1997).CrossRefADSGoogle Scholar
  29. 29.
    J.R. Melrose, R.C. Ball, J. Rheol. 48, 937 (2004).CrossRefADSGoogle Scholar
  30. 30.
    C.W. Beenakker, J. Chem. Phys. 85, 1581 (1986).CrossRefADSGoogle Scholar
  31. 31.
    R.F. Probstein, Physicochemical Hydrodynamics: An Introduction, 2nd edition (John Wiley & Sons, New York, 2003).Google Scholar
  32. 32.
    F. Booth, J. Chem. Phys. 22, 1956 (1954).CrossRefADSGoogle Scholar
  33. 33.
    H. Ohshima, T.W. Healy, L.R. White, R.W. O’Brien, J. Chem. Soc. Faraday Trans. 2 80, 1299 (1984).CrossRefGoogle Scholar
  34. 34.
    J.L. Anderson, Annu. Rev. Fluid Mech. 21, 61 (1989).CrossRefADSGoogle Scholar
  35. 35.
    D. Long, A. Ajdari, Eur. Phys. J. E 4, 29 (2001).CrossRefGoogle Scholar
  36. 36.
    K. Kim, Y. Nakayama, R. Yamamoto, Phys. Rev. Lett. 96, 208302 (2006).Google Scholar
  37. 37.
    H. Ohshima, T.W. Healy, L.R. White, J. Colloid Interface Sci. 90, 17 (1982).CrossRefGoogle Scholar
  38. 38.
    R. Yamamoto, Phys. Rev. Lett. 87, 075502 (2001).Google Scholar
  39. 39.
    K. Kim, R. Yamamoto, Macromol. Theory Simul. 14, 278 (2005).CrossRefGoogle Scholar
  40. 40.
    T. Iwashita, Y. Nakayama, R. Yamamoto, J. Phys. Soc. Jpn. 77 (2008) in press.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKyushu UniversityFukuokaJapan
  2. 2.Department of Theoretical and Computational Molecular ScienceInstitute for Molecular ScienceMyodaiji, Okazaki, AichiJapan
  3. 3.Department of Chemical EngineeringKyoto UniversityKyotoJapan
  4. 4.CREST, Japan Science and Technology AgencySaitamaJapan

Personalised recommendations