Influence of system size and solvent flow on the distribution of wormlike micelles in a contraction-expansion geometry

  • M. R. Stukan
  • E. S. Boek
  • J. T. Padding
  • J. P. Crawshaw


Viscoelastic wormlike micelles are formed by surfactants assembling into elongated cylindrical structures. These structures respond to flow by aligning, breaking and reforming. Their response to the complex flow fields encountered in porous media is particularly rich. Here we use a realistic mesoscopic Brownian Dynamics model to investigate the flow of a viscoelastic surfactant (VES) fluid through individual pores idealized as a step expansion-contraction of size around one micron. In a previous study, we assumed the flow field to be Newtonian. Here we extend the work to include the non-Newtonian flow field previously obtained by experiment. The size of the simulations is also increased so that the pore is much larger than the radius of gyration of the micelles. For the non-Newtonian flow field at the higher flow rates in relatively large pores, the density of the micelles becomes markedly non-uniform. In this case, we find that the density in the large, slowly moving entry corner regions is substantially increased.


83.80.Qr Surfactant and micellar systems, associated polymers 83.10.Mj Molecular dynamics, Brownian dynamics 47.56.+r Flow through porous media 


  1. 1.
    W.M. Gelbart, A. Ben-Shaul, D. Roux (Editors), Micelles, Membrane, Microemulsions, and Monolayers (Springer Verlag, Berlin, 1994).Google Scholar
  2. 2.
    R. Zana, E.W. Kaler (Editors), Giant Micelles. Properties and Applications (Taylor & Francis Group, NY, 2007).Google Scholar
  3. 3.
    M.E. Cates, S.J. Candau, J. Phys.: Condens. Matter 2, 6869 (1990).CrossRefADSGoogle Scholar
  4. 4.
    H. Rehage, H. Hoffmann, Mol. Phys. 74, 933 (1991).CrossRefADSGoogle Scholar
  5. 5.
    R.K. Prud'homme, G.G. Warr, Langmuir 10, 3419 (1994).CrossRefGoogle Scholar
  6. 6.
    E.K. Wheeler, P. Izu, G.G. Fuller, Rheol. Acta 35, 139 (1996).CrossRefGoogle Scholar
  7. 7.
    M. Kröger, R. Makhloufi, Phys. Rev. E 53, 2531 (1996).CrossRefADSGoogle Scholar
  8. 8.
    J.T. Padding, E.S. Boek, Phys. Rev. E 70, 031502 (2004).CrossRefADSGoogle Scholar
  9. 9.
    R.W. Mair, P.T. Callaghan, J. Rheol. 41, 901 (1997).CrossRefADSGoogle Scholar
  10. 10.
    W. Carl, R. Makhloufi, M. Kröger, J. Phys. II 7, 931 (1997).CrossRefGoogle Scholar
  11. 11.
    P.A. Hassan, J. Narayanan, C. Manohar, Curr. Sci. 80, 980 (2001).Google Scholar
  12. 12.
    F. Bautista, J.M. de Santos, J.E. Puig, O. Manero, J. Non-Newtonian Fluid Mech. 80, 93 (1999).CrossRefzbMATHGoogle Scholar
  13. 13.
    O. Manero, F. Bautista, J.F.A. Soltero, J.E. Puig, J. Non-Newtonian Fluid Mech. 106, 1 (2002).CrossRefADSzbMATHGoogle Scholar
  14. 14.
    C. Oelschlaeger, G. Watson, E. Buhler, S.J. Candau, M.E. Cates, Langmuir 18, 3076 (2002).CrossRefGoogle Scholar
  15. 15.
    E.S. Boek, J.T. Padding, V. Anderson, P.M.J. Tardy, J.P. Crawshaw, J.R.A. Pearson, J. Non-Newtonian Fluid Mech. 126, 39 (2005).CrossRefzbMATHGoogle Scholar
  16. 16.
    J.T. Padding, E.S. Boek, W.J. Briels, J. Phys.: Condens. Matter 17, S3347 (2005).Google Scholar
  17. 17.
    M.E. Cates, S.M. Fielding, Adv. Phys. 55, 799 (2006).CrossRefADSGoogle Scholar
  18. 18.
    E.S. Boek, J.T. Padding, V. Anderson, W.J. Briels, J.P. Crawshaw, J. Non-Newtonian Fluid Mech. 146, 11 (2007).CrossRefzbMATHGoogle Scholar
  19. 19.
    V. Anderson, J.R.A. Pearson, E. Boek, chapter The Rheology of Worm-like Micellar Fluids, in Rheology Reviews 2006 (British Society of Rheology, 2006) pp. 217--255.Google Scholar
  20. 20.
    G.C. Maitland, Curr. Opin. Colloid Interface Sci. 5, 301 (2000).CrossRefGoogle Scholar
  21. 21.
    J.R.A. Pearson, P.M.J. Tardy, J. Non-Newtonian Fluid Mech. 102, 447 (2002). CrossRefzbMATHGoogle Scholar
  22. 22.
    J. Penfold, E. Staples, I. Tucker, P. Carroll, I. Clayton, J.S. Cowan, G. Lawton, S. Amin, A. Ferrante, N. Ruddock, J. Phys. Chem. B 110, 1073 (2006).CrossRefGoogle Scholar
  23. 23.
    B.A. Schubert, N.J. Wagner, E.W. Kaler, Langmuir 20, 3564 (2004).CrossRefGoogle Scholar
  24. 24.
    M.V. Apostolakis, V.G. Mavrantzas, A.N. Beris, J. Non-Newtonian Fluid Mech. 102, 409 (2002).CrossRefzbMATHGoogle Scholar
  25. 25.
    M.R. Stukan, E.S. Boek, J.T. Padding, W.J. Briels, J.P. Crawshaw, Soft Matter 4, 870 (2008).CrossRefGoogle Scholar
  26. 26.
    J.T. Padding, E.S. Boek, Europhys. Lett. 66, 756 (2004).CrossRefADSGoogle Scholar
  27. 27.
    I. Couillet, T. Hughes, G. Maitland, F. Candau, S.J. Candau, Langmuir 20, 9541 (2004).CrossRefGoogle Scholar
  28. 28.
    J.T. Padding, E.S. Boek, W.J. Briels, submitted to J. Chem. Phys.Google Scholar
  29. 29.
    J.T. Padding, W.J. Briels, J. Chem. Phys. 115, 2846 (2001).CrossRefADSGoogle Scholar
  30. 30.
    J.T. Padding, W.J. Briels, J. Chem. Phys. 117, 925 (2002).CrossRefADSGoogle Scholar
  31. 31.
    M. Doi, S. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).Google Scholar
  32. 32. Scholar
  33. 33.
    P.E. Rouse, J. Chem. Phys. 21, 1272 (1953)CrossRefADSGoogle Scholar
  34. 34.
    A. Khatory, F. Lequeux, F. Kern, S.J. Candau, Langmuir 9, 1456 (1993).CrossRefGoogle Scholar
  35. 35.
    S.R. Raghavan, E.W. Kaler, Langmuir 17, 300 (2001).CrossRefGoogle Scholar
  36. 36.
    C.C. Huang, H. Xu, F. Crevel, J. Wittmer, J.P. Ryckaert, Lect. Notes Phys. 704, 379 (2006).CrossRefGoogle Scholar
  37. 37.
    C.C. Huang, H. Xu, J.P. Ryckaert, J. Chem. Phys. 125, 094901 (2006).CrossRefADSGoogle Scholar
  38. 38.
    A. Milchev, J.P. Wittmer, D.P. Landau, Eur. Phys. J. B 12, 241 (1999).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  • M. R. Stukan
    • 1
  • E. S. Boek
    • 1
  • J. T. Padding
    • 2
  • J. P. Crawshaw
    • 1
  1. 1.Schlumberger Cambridge ResearchCambridgeUK
  2. 2.Computational Biophysics, Department of Science and TechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations