Advertisement

The European Physical Journal E

, Volume 25, Issue 4, pp 439–449 | Cite as

Characterization of single semiflexible filaments under geometric constraints

  • S. Köster
  • J. Kierfeld
  • T. Pfohl
Open Access
Regular Article

Abstract.

Confinement effects on single semiflexible macromolecules are of central importance for a fundamental understanding of cellular processes involving biomacromolecules. To analyze the influence of confinement on the fluctuations of semiflexible macromolecules we study individual actin filaments in straight and curved microchannels. We experimentally characterize the segment distributions for fluctuating semiflexible filaments in microchannels as a function of the channel width. Moreover, the effect of channel curvature on the filament fluctuations is investigated. We find quantitative agreement between experimental results, Monte Carlo simulations, and the analytical description. This allows for determination of the persistence length of actin filaments, the deflection length, which characterizes the confinement effects, and the scaling exponents for the segment distribution of semiflexible macromolecules.

PACS.

87.16.Ka Filaments, microtubules, their networks, and supramolecular assemblies 87.16.Ac Theory and modeling; computer simulation 82.37.Rs Single molecule manipulation of proteins and other biological molecules 

References

  1. 1.
    A.R. Bausch, K. Kroy, Nature Phys. 2, 231 (2006).CrossRefADSGoogle Scholar
  2. 2.
    D. Boal, Mechanics of the Cell (Cambridge University Press, Cambridge, 2002).Google Scholar
  3. 3.
    J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer, Sunderland, 2001).Google Scholar
  4. 4.
    W.W. Reisner, K.J. Morton, R. Riehn, Y.M. Wang, Z. Yu, M. Rosen, J.C. Sturm, S.Y. Chou, E. Frey, R.H. Austin, Phys. Rev. Lett. 94, 196101 (2005).CrossRefADSGoogle Scholar
  5. 5.
    J.O. Tegenfeldt, C. Prinz, H. Cao, S. Chou, W.W. Reisner, R. Riehn, K.J. Morton, Y.M. Wang, E.C. Cox, J.C. Sturm, P. Silberzan, R.H. Austin, Proc. Natl. Acad. Sci. U.S.A. 101, 10979 (2004).CrossRefADSGoogle Scholar
  6. 6.
    I.Y. Wong, M.L. Gardel, D.R. Reichman, E.R. Weeks, M.T. Valentine, A.R. Bausch, D.A. Weitz, Phys. Rev. Lett. 92, 178101 (2004).CrossRefADSGoogle Scholar
  7. 7.
    D. Mizuno, C. Tardin, C.F. Schmidt, F.C. MacKintosh, Science 315, 370 (2007).CrossRefADSGoogle Scholar
  8. 8.
    J. Käs, H. Strey, E. Sackmann, Nature 368, 226 (1994).CrossRefADSGoogle Scholar
  9. 9.
    E.G. Canty, T. Starborg, Y. Lu, S.M. Humphries, D.F. Holmes, R.S. Meadows, A. Huffman, E.T. O`Toole, K.A. Kadler, J. Biol. Chem. 281, 38592 (2006).CrossRefGoogle Scholar
  10. 10.
    J. Han, S.W. Turner, H.G. Craighead, Phys. Rev. Lett. 83, 1688 (1999).CrossRefADSGoogle Scholar
  11. 11.
    T. Pfohl, F. Mugele, R. Seemann, S. Herminghaus, ChemPhysChem 4, 1291 (2003).CrossRefGoogle Scholar
  12. 12.
    D. Stein, F.H.J. van der Heyden, W.J.A. Koopmans, C. Dekker, Proc. Natl. Acad. Sci. U.S.A. 103, 15853 (2006).CrossRefADSGoogle Scholar
  13. 13.
    S. Köster, D. Steinhauser, T. Pfohl, J. Phys.: Cond. Mat. 17, S4091 (2005).Google Scholar
  14. 14.
    S. Köster, H. Stark, T. Pfohl, J. Kierfeld, Biophys. Rev. Lett. 2, 155 (2007). CrossRefGoogle Scholar
  15. 15.
    M.C. Choi, C.D. Santangelo, O. Pelletier, J.H. Kim, S.Y. Kwon, Z. Wen, Y. Li, P.A. Pincus, C.R. Safinya, M.W. Kim, Macromolecules 38, 9882 (2005).CrossRefGoogle Scholar
  16. 16.
    F. Wagner, G. Lattanzi, E. Frey, Phys. Rev. E 75, 050902(R) (2007).CrossRefADSGoogle Scholar
  17. 17.
    T. Odijk, Macromolecules 16, 1340 (1983).CrossRefGoogle Scholar
  18. 18.
    W.M. Gelbart, R.F. Bruinsma, P.A. Pincus, V.A. Parsegian, Phys. Today 53, 83 (2000).CrossRefGoogle Scholar
  19. 19.
    T. Odijk, Macromolecules 26, 6897 (1993).CrossRefGoogle Scholar
  20. 20.
    Y. Xia., G. Whitesides, Angew. Chem. Int. Ed. 37, 550 (1998).CrossRefGoogle Scholar
  21. 21.
    E. Delamarche, A. Bernard, H. Schmid, H. Biebuyck, Science 276, 779 (1997).CrossRefGoogle Scholar
  22. 22.
    J. Hendricks, T. Kawakatsu, K. Kawasaki, W. Zimmermann, Phys. Rev. E. 51, 2658 (1995).CrossRefADSGoogle Scholar
  23. 23.
    G. Gompper, T.W. Burkhardt, Phys. Rev. A 40, 6124 (1989).CrossRefADSGoogle Scholar
  24. 24.
    T.W. Burkhardt, J. Phys. A: Math. Gen. 26, L1157 (1993).Google Scholar
  25. 25.
    T.W. Burkhardt, J. Phys. A: Math. Gen. 30, L167 (1997).Google Scholar
  26. 26.
    J. Kierfeld, R. Lipowsky, Europhys. Lett. 62, 285 (2003).CrossRefADSGoogle Scholar
  27. 27.
    M. Abramowitz, A.I. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, Washington, 1965).Google Scholar
  28. 28.
    L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon Press, London, 1958).Google Scholar
  29. 29.
    O. Kratky, G. Porod, Recl. Trav. Chim. Pay-B. 68, 1106 (1949).Google Scholar
  30. 30.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, 1979).Google Scholar
  31. 31.
    E. Cassasaand, Y. Yagami, Macromolecules 2, 14 (1969).CrossRefGoogle Scholar
  32. 32.
    C. Hiergeist, R. Lipowsky, Physica A 244, 164 (1997).CrossRefADSGoogle Scholar
  33. 33.
    J. Kierfeld, O. Niamploy, V. Sa-yakanit, R. Lipowsky, Eur. Phys. J. E 14, 17 (2004).CrossRefGoogle Scholar
  34. 34.
    A. Ott, M. Magnasco, A. Simon, A. Libchaber, Phys. Rev. E 48, R1642 (1993).Google Scholar

Copyright information

© The Author(s) 2008

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  1. 1.Max Planck Institute for Dynamics and Self-OrganizationGöttingenGermany
  2. 2.Max Planck Institute of Colloids and InterfacesPotsdamGermany

Personalised recommendations