Advertisement

The European Physical Journal E

, Volume 25, Issue 2, pp 181–186 | Cite as

Biaxial liquid-crystal elastomers: A lattice model

  • G. Skačej
  • C. Zannoni
Regular Article

Abstract.

We present a simple coarse-grained lattice model for monodomain biaxial liquid-crystal elastomers and perform large-scale Monte Carlo simulations in the proposed model system. Orientational ordering --uniaxial or biaxial-- reflects in sample deformations on cooling the system. The simulation output is used to predict calorimetry data and deuterium magnetic resonance spectra.

PACS.

61.30.Vx Polymer liquid crystals 61.30.Cz Molecular and microscopic models and theories of liquid crystal structure 61.41.+e Polymers, elastomers, and plastics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Warner, E.M. Terentjev, Liquid Crystal Elastomers (Oxford University Press, Oxford, 2003).Google Scholar
  2. 2.
    J.P. Straley, Phys. Rev. A 10, 1881 (1974).CrossRefADSGoogle Scholar
  3. 3.
    F. Biscarini, C. Chiccoli, P. Pasini, F. Semeria, C. Zannoni, Phys. Rev. Lett. 75, 1803 (1995).CrossRefADSGoogle Scholar
  4. 4.
    R. Berardi, C. Zannoni, J. Chem. Phys. 113, 5971 (2000). CrossRefADSGoogle Scholar
  5. 5.
    B.R. Acharya, A. Primak, S. Kumar, Phys. Rev. Lett. 92, 145506 (2004).CrossRefADSGoogle Scholar
  6. 6.
    K. Neupane, S.W. Kang, S. Sharma, D. Carney, T. Meyer, G.H. Mehl, D.W. Allender, S. Kumar, S. Sprunt, Phys. Rev. Lett. 97, 207802 (2006).CrossRefADSGoogle Scholar
  7. 7.
    L.A. Madsen, T.J. Dingemans, M. Nakata, E.T. Samulski, Phys. Rev. Lett. 92, 145505 (2004).CrossRefADSGoogle Scholar
  8. 8.
    J.L. Figueirinhas, C. Cruz, D. Filip, G. Feio, A.C. Ribeiro, Y. Frère, T. Meyer, G.H. Mehl, Phys. Rev. Lett. 94, 107802 (2005).CrossRefADSGoogle Scholar
  9. 9.
    K. Severing, K. Saalwächter, Phys. Rev. Lett. 92, 125501 (2004).CrossRefADSGoogle Scholar
  10. 10.
    K. Severing, E. Stibal-Fischer, A. Hasenhindl, H. Finkelmann, K. Saalwächter, J. Chem. Phys. B 110, 15680 (2006).CrossRefGoogle Scholar
  11. 11.
    P. Pasini, G. Skačej, C. Zannoni, Chem. Phys. Lett. 413, 463 (2005).CrossRefADSGoogle Scholar
  12. 12.
    A.M. Sonnet, E.G. Virga, G.E. Durand, Phys. Rev. E 67, 061701 (2003).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M.E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).Google Scholar
  14. 14.
    P.A. Lebwohl, G. Lasher, Phys. Rev. A 6, 426 (1972).CrossRefADSGoogle Scholar
  15. 15.
    W. Maier, A. Saupe, Z. Naturforsch. A 14, 882 (1959).Google Scholar
  16. 16.
    W. Maier, A. Saupe, Z. Naturforsch. A 15, 287 (1960).Google Scholar
  17. 17.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).CrossRefADSGoogle Scholar
  18. 18.
    J.A. Barker, R.O. Watts, Chem. Phys. Lett. 3, 144 (1969).CrossRefADSGoogle Scholar
  19. 19.
    U. Fabbri, C. Zannoni, Mol. Phys. 58, 763 (1986).CrossRefADSGoogle Scholar
  20. 20.
    R.Y. Dong, Nuclear Magnetic Resonance of Liquid Crystals (Springer Verlag, New York, 1994).Google Scholar
  21. 21.
    C. Chiccoli, P. Pasini, G. Skačej, S. Žumer, C. Zannoni, Phys. Rev. E 60, 4219 (1999).CrossRefADSGoogle Scholar
  22. 22.
    J. Küpfer, H. Finkelmann, Macromol. Chem. Rapid Commun. 12, 717 (1991).CrossRefGoogle Scholar
  23. 23.
    H.R. Brand, K. Kawasaki, Macromol. Rapid Commun. 15, 251 (1994).CrossRefGoogle Scholar
  24. 24.
    A. Lebar, Z. Kutnjak, S. Žumer, H. Finkelmann, A. Sánchez-Ferrer, B. Zalar, Phys. Rev. Lett. 94, 197801 (2005).CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica and Springer-Verlag 2008

Authors and Affiliations

  • G. Skačej
    • 1
  • C. Zannoni
    • 2
  1. 1.Fakulteta za matematiko in fizikoUniverza v LjubljaniLjubljanaSlovenia
  2. 2.Dipartimento di Chimica Fisica ed Inorganica and INSTM -CRIMSON-Università di BolognaBolognaItaly

Personalised recommendations